RNA-seq目前是测量细胞反应的最突出的方法之一。RNA-seq不仅能够分析样本之间基因表达的差异,还可以发现新的亚型并分析SNP变异。本教程[1]将涵盖处理和分析差异基因表达数据的基本工作流程,旨在提供设置环境和运行比对工具的通用方法。请注意,它并不适用于所有类型的分析,比对工具也不适用于所有分析。此外,本教程的重点...
C列为基因在两类分组H和P间表达的log2FoldChange, 为该基因在H中表达量相对于P中表达量的差异倍数取对数,由于log21=0,因此在log2FoldChange=0时无差异,>(<)0时表示上调(下调),常取log2FC >1或<-1表示两倍上调或下调。 F列为表达差异的显著性P值,G列为矫正后的P值,差异表达分析除了要求log2FC,还需...
一般来说,我们在RNA-seq进行差异分析时最好使用Count值,因为limma-voom、edgeR和DESeq2都是针对RNA-seq的Count值分布进行假设,从而设计的软件。但是,在实际过程中,我们并不是总能获得其Count值,而经常得到的是FPKM或者TPM值,那对于这种情况,我们能不能使用类似于分析芯片的方法进行差异分析呢? 文章利用数据集 GSE1...
10. 通路富集 从差异表达基因中寻找通路 通路富集分析是基于单个基因变化生成结论的好方法。有时个体基因的变化是难以解释。但是通过分析基因的通路,我们可以收集基因反应的视图。 设置矩阵以考虑每个基因的 EntrezID 和倍数变化 # 删除没有任何 entrez 标识符的基因 results_sig_entrez <- subset(results_sig, is.n...
差异基因表达分析是一种常见的生信分析方法,是每个生信人都必须掌握的技术,本文将使用R语言演示如何利用limma包分析TCGA的RNA基因表达矩阵。 首先,准备好所需的数据,如下图所示,基因表达数据为一个包含样品与基因的矩阵。 首先,打开R之后先加载所需的R包。其中,limma是差异基因表达分析的一个常用R包,ggplot2和ggrep...
RNA-seq目前是测量细胞反应的最突出的方法之一。RNA-seq不仅能够分析样本之间基因表达的差异,还可以发现新的亚型并分析SNP变异。本教程将涵盖处理和分析差异基因表达数据的基本工作流程,旨在提供设置环境和运行比对工具的通用方法。由于完整版过长,因此分为两部分,需要获取完整版的,请跳转文末。
1.RNA-seq数据分析指标 Counts:这是最基本的数据形式,指的是对特定基因或转录本的读数(reads)数量。它是原始测序数据的直接结果。 CPM (Counts Per Million):即每百万计数。这是一种标准化方法,通过将读数计数除以测序总读数再乘以一百万来校正不同样品之间的测序深度差异。
RNA-Seq数据,在这里指的是基于NGS测序技术,在转录组水平对样本中基因表达进行定量,得到的counts数据,比如HTseq,hisat2,RSEM等上游定量分析软件得到的counts矩阵。 得到样本基因表达数据后,我们通常会对不同样本分组,然后进行差异表达分析,将基因表达变化与表型联系起来,解释与表型...
一、准备待分析文件 样本简况:两个来自于化脓性链球菌的基因表达样本,每个样本有两个成对fastq文件,分别为 Read1 (R1) 和 Read2 (R2)。样本一:(wil...