MA plot即M-versus-A plot,在芯片数据处理出现之前也称为Bland-Altman plot,是由发明者名字命名的,而MA plot是对M与A作图而得名,M是minus的缩写,代表两个值之差,A是add的缩写,代表两个值之和。有研究者也把MA plot称为Ratio-Intensity (RI) plots,同时MA也正好是micro-array的简写。 一、MA图简介 MA图...
在处理RNA-Seq数据时,raw read count先被转成log2-counts-per-million (logCPM),然后对mean-variance关系建模。有两种建模方法: 1.精确权重法(precision weights)也就是voom 2.经验贝叶斯先验趋势(empirical Bayes prior trend),也就是”limma-trend“ 操作: dge <- DGEList(counts=count2) group.list=c(rep...
WGCNA (weighted gene co-expression network analysis)权重基因共表达网络分析(流程模块见下图),可将表达模式相似的基因进行聚类,并分析模块与特定性状或表型之间的关联,常用于筛选关键表型的hub基因 ,是RNAseq分析中的一块很重要的拼图。而之所以叫组学数据黏合剂是因为表型可以是患者的临床信息(生存信息,分期信息,基线...
RNA-seq分析入门01——差异基因表达分析 差异基因表达分析是一种常见的生信分析方法,是每个生信人都必须掌握的技术,本文将使用R语言演示如何利用limma包分析TCGA的RNA基因表达矩阵。 首先,准备好所需的数据,如下图所示,基因表达数据为一个包含样品与基因的矩阵。 首先,打开R之后先加载所需的R包。其中,limma是差异基...
WGCNA (weighted gene co-expression network analysis)权重基因共表达网络分析(流程模块见下图),可将表达模式相似的基因进行聚类,并分析模块与特定性状或表型之间的关联,常用于筛选关键表型的hub基因 ,是RNAseq分析中的一块很重要的拼图。而之所以叫组学数据黏合剂是因为表型可以是患者的临床信息(生存信息,分期信息,基线...
上一篇已经系统介绍了有参RNASeq上游分析,从测序数据fastq文件到最终生成表达矩阵。这一系列基本都是RNASeq通用常规分析,其下游差异表达及可视化则根据需求及研究目标而有所不同。这一篇着重介绍差异表达分析及常用可视化作图,以下进入正题: 六、差异表达分析
首先,使用浏览器(推荐chrome或者edge)打开聚类热图绘制页面。左侧为常见作图导航,中间为数据输入框和可选参数,右侧为描述和结果示例。也可以在主页搜索框中搜索heatmap,找到绘图页面。 https://www.bioinformatics.com.cn/plot_basic_cluster_heatmap_plot_024 ...
图1. RNA-seq常规分析流程 叨叨完毕,进入正题。 进入尔云后,打开“测序数据处理”模块,我们会看到图2的结果。在这一模块,我们可以完成RNA-seq数据分析的前两步: 1、数据质控和过滤低质量数据; 2、基因组组装,计算基因表达量。对于上面两部,尔云又根据是双端测序还是单端测序,分了两块。以edgeR为例,输出的DEGs...
横轴就是Ratio,纵轴是富集terms,这都没问题,然后填充按照分组,并赋予和文章中类似的颜色。然后就是...
介绍 RNA-seq目前是测量细胞反应的最突出的方法之一。RNA-seq不仅能够分析样本之间基因表达的差异,还可以...