通过RNA-Seq,可以获得基因的表达量信息,以了解哪些基因在特定条件下活跃或沉默。下面是一些关于RNA-Seq基因表达量的基本概念: 1.基因表达量的测量单位: 基因表达量通常以FPKM(每百万个碱基对的片段数)或 TPM(每百万个转录本的片段数)为单位来表示。这些单位考虑了测序深度和基因长度的因素,使得可以比较不同基因在...
RNA-seq可以检测的差异有:正常组织和肿瘤组织的之间的差异,药物治疗前后基因表达的差异,发育过程中不同的发育阶段不同的组织之间的基因表达差异,等等。 在所有检测的差异类型中,最常见的就是检测所有mRNA的表达量的差异。 同时,还可以检测 RNA 的结构上的差异。例如:mRNA的剪接方式的差异,也就是我们一般说的“可变...
对于这样的问题,Deseq尝试对数据进行矫正(矫正因子),使表达量处于中间位置的基因表达量应该是基本相同的(即使用表达量处于中间的基因表达量值作为参照,而减少高表达基因的作用)。 Deseq: 校正因子=样本表达中位数/所有样本表达量中位数:回答了一个关键的问题:Deseq不同差异比较组间,计算得到的表达量值不同。因 ...
差异基因表达分析是一种常见的生信分析方法,是每个生信人都必须掌握的技术,本文将使用R语言演示如何利用limma包分析TCGA的RNA基因表达矩阵。 首先,准备好所需的数据,如下图所示,基因表达数据为一个包含样品与基因的矩阵。 首先,打开R之后先加载所需的R包。其中,limma是差异基因表达分析的一个常用R包,ggplot2和ggrep...
转录组是指一个细胞、组织或生物体在特定条件或状态下转录的所有RNA集合。RNA-Seq利用新一代测序技术,通过测序细胞或组织中的所有RNA,分析其种类和丰度,从而获得基因表达的全景图。转录组测序的主要步骤包括:RNA提取、构建文库、测序和数据分析。二、转录组测序的主要步骤 RNA提取:从样本(如细胞、组织、血液等)...
最终获得的Rnaseq.diff.csv包含了每个差异基因在各个样品中的表达量以及差异倍数
本文以从NCBI SRA下载的开源RNA-seq数据为例,演示基于 tophat2 和 cufflinks 的基因表达量差异分析。 Part.1 SRA数据下载与表达量分析所需软件下载安装 SRA数据简介 随着高通量测序的发展,测序价格不断下降,测序通量也不断提高,使很多实验室,可以获得大批量的数据,但是...
转录组测序是最常用的组学实验,对全谱基因定量,找到差异表达基因。RNAseq涉及到原始数据,数据质控,基因组比对,差异基因鉴定,差异基因功能富集分析,重要基因如转录因子激酶的靶基因预测等,我们用10讲的时间,全面讲解转录组测序报告,及在上百个项目中遇到的近百个常见问题。
经过hisat2比对及格式转换之后,我们得到了多个bam文件,文件中包含了每个reads在基因组上的比对信息,下面我们要使用Stringtie将其组装并得到具体的基因表达量信息。 Stringtie介绍 StringTie 是一种快速高效的将 RNA-Seq 比对到潜在转录本的组装程序。 它使用新的网络流算法以及可选的从头组装步骤来组装和定量代表每个基因...