🔧 RNA-Seq的步骤 构建序列文库:将RNA打断成小片段,并反转录成DNA,然后加上接头,进行PCR扩增。 比对到参考基因组:将测序得到的reads比对到参考基因组上,找出它们在基因组上的位置。 回帖:根据比对结果,将reads回帖到基因组上,得到它们的原始位置和表达量。 数据分析:用featureCounts结合注释文件,将转录本构建出来,...
也就是说,测rRNA,它得到的数据,并不能为实验者提供什么有用的信息,而mRNA才是RNA当中信息含量最丰富的那个部分。 我们一般的RNA-seq要测的,也是mRNA的各种变化,所以,在实验过程当中,我们一般要把核糖体RNA先去掉。然后再进行建库测序。 去除核糖体RNA,并进行建库的方法有许多种。目前应用最广泛的是illumina公司的...
RNA-seq数据分析通常包括以下几个步骤:数据预处理、序列比对、定量分析、差异表达分析、功能注释和可视化。其中,序列比对是RNA-seq数据分析的关键步骤之一,因为它直接影响到后续的基因定量和差异表达分析。序列比对的目的是将测序获得的reads(短序列片段)与参考基因组或转录组进行匹配,从而确定这些reads来源于哪些基因或转...
你只要记得,deseq2只是一个差异分析的软件,就是类似于做方差分析的软件一样,只不过其通过log变换和中位数挑选来排除异常值的影响。 deseq2矫正的原理可以看原北卡罗来纳大学教堂山分校的Josh Starme的StatQuest系列视频教程https://statquest.org/video-index/,里边的统计学原理值得学习,也有人将这个系列的视频整理...
RNA-seq工作流程主要分为以下三步: 文库制备,使用可精确检测链方向的方法获得完整的转录组图像。 兼容FFPE RNA。 测序。 数据分析。 分析流程(Analysis Pipeline) 上游分析的过程需要在Linux系统中完成。由上述测序技术所得到的原始测序文件为.fastq格式文件,其主要格式为: @A00184:675:HKHGGDSXY:2:1101:1181:1000...
📂 读取数据 首先,我们需要读取公司返回的RNA-seq数据。通常这些数据会以TPM(Transcripts Per Million)格式存储。我们可以使用R语言中的read.csv函数来读取这些数据。🔄 预处理 在进行分析之前,我们需要对数据进行一些预处理。这包括去除重复的行名、过滤掉表达量为0的基因以及低表达基因。我们可以通过dplyr包中的...
本系列开启 R 中单细胞RNA-seq数据分析教程,持续更新,欢迎关注,转发! 利用注释好的参考数据集辅助新数据分析 随着全球范围内单细胞RNA测序(scRNA-seq)数据的不断增多,特别是在人类细胞图谱(HCA)项目的推动下,大量注释详尽的图谱级scRNA-seq数据集已公开可用。因此,在分析新的相关数据集时,若不利用这些资源来辅助分...
📚 RNA-Seq数据分析是一个复杂但关键的过程,从原始数据的质控到最终的可视化分析,每一步都至关重要。以下是一个详细的RNA-Seq数据分析流程,帮助你从原始数据一步步走向科学发现:1️⃣ 原始数据质控:确保数据的完整性和准确性,为后续分析打下基础。2...
RNA-Seq数据,在这里指的是基于NGS测序技术,在转录组水平对样本中基因表达进行定量,得到的counts数据,比如HTseq,hisat2,RSEM等上游定量分析软件得到的counts矩阵。 得到样本基因表达数据后,我们通常会对不同样本分组,然后进行差异表达分析,将基因表达变化与表型联系起来,解释与表型...