https://github.com/airockchip/rknn-toolkit https://github.com/airockchip/rknpu https://github.com/airockchip/RK3399Pro_npu Download You can also download all packages, docker image, examples, docs and platform-tools fromRKNPU2_SDK, fetch code: rknn ...
https://github.com/airockchip/rknn-toolkit https://github.com/airockchip/rknpu https://github.com/airockchip/RK3399Pro_npu Download You can also download all packages, docker image, examples, docs and platform-tools fromRKNPU2_SDK, fetch code: rknn ...
RKNN Toolkit2的连板功能一般需要更新板端的 rknn_server 和 librknnrt.so/librknnmrt.so,并且手动启动 rknn_server 才能正常工作。 rknn_server: 是一个运行在板子上的后台代理服务,用于接收PC通过USB传输过来的协议,然后执行板端runtime对应的接口,并返回结果给PC。
使用2.0版本的rknn,关于图像输入,有没有opencv的C++版本?如下的yolov8_seg例子中的输入是一个自定义的结构体image_buffer_t ,可以提供cv::mat格式的图像输入的示例代码吗? image_buffer_t src_image; memset(&src_image, 0, sizeof(image_buffer_t)); ret = read_image
我有一个分类网络,输入batch为2,具体如下: model input num: 1, output num: 1 input tensors: index=0, name=input.6, n_dims=4, dims=[2, 224, 224, 3], n_elems=301056, size=602112, fmt=NHWC, type=FP16, qnt_type=AFFINE, zp=0, scale=1.000000 output tensors: in
Explore All features Documentation GitHub Skills Blog Solutions By company size Enterprises Small and medium teams Startups Nonprofits By use case DevSecOps DevOps CI/CD View all use cases By industry Healthcare Financial services Manufacturing Government View all industries View all sol...
GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Contribute to airockchip/rknn-toolkit2 development by creating an account on GitHub.
MarcA711 / rknn-toolkit2 Public forked from airockchip/rknn-toolkit2 Notifications Fork 0 Star 0 Releases v2.0.0 rknn v2.0.0 Latest Latest Compare MarcA711 released this 19 Jun 12:10 v2.0.0 77b7109 Update RK3562/RK3566/RK3568/RK3576/RK3588/RV1103/RV1106 NPU SDK to V2…...
https://github.com/airockchip/rknn-llm CHANGELOG v2.3.0 RKNN-Toolkit2 support ARM64 architecture RKNN-Toolkit-Lite2 support installation via pip Add support for W4A16 symmetric quantization (RK3576) Operator optimization, such as LayerNorm, LSTM, Transpose, MatMul, etc. ...