本发明不仅能够在弱对齐RGB‑D图像的引导下对数据严重缺失的原始深度图进行补全,并能够保证补全深度图的结构准确度和平滑度。权利要求书3页 说明书12页 附图5页CN 116012430 A2023.04.25CN 116012430 A
对于每一个场景,使用基于屏幕空间的泊松曲面重建(screened Poisson surface reconstruction),从全局曲面重建中提取一个包含1~6百万三角形的三角网格M;然后,在场景中对RGB-D图像进行采样,我们从图像视点的摄像机姿态渲染重建的网格M,以获得一个完整的深度图像D。这个过程为我们提供了一套RGB-D->D*图像对,而不需要收...
透明物体深度补全NeRF 使用现成的RGB-D相机获取透明物体的精确深度信息是计算机视觉和机器人领域的一个众所周知的挑战。深度估计/补全方法通常在从模拟、额外的传感器或专门的数据收集装置和已知的三维模型中获得具有质量深度标签的数据集上使用和训练。然而,在大规模数据集上获取可靠的深度信息并不简单,限制了训练的可...
CVPR18基于深度学习的深度图像补全Deep Depth Completion of a Single RGB-D Image 研究deep depth completion,不受RGB-D相机类型的限制,只需要输入一张RGB加一张depth图,可以补全任意形式深度图的缺失。目前主要针对的是室内环境。 论文: Deep Depth Completion of a Single RGB-D Image 作者:Yinda Zhang, Thoma...
摘要:本发明公开了一种弱对齐RGB‑D图像引导的深度图补全方法及系统,对弱对齐RGB‑D图像进行不一致像素点检测,使用神经网络技术将弱对齐RGB‑D图像划分为平坦区域和深度结构区域,选取表面法线特征约束平坦区域的深度值平滑度;选取高斯权重特征约束深度结构区域结构信息的准确度,采用核函数调整高斯权重大小;结合马尔科...