RFAConv的核心思想是通过关注感受野的空间特征,并为每个感受野生成独立的注意力权重,从而实现参数不共享的卷积操作。 对于输入 X,RFAConv的实现过程: Receptive-Field Spatial Feature:对于输入特征,首先通过Group Conv将输入特征图转换为感受野空间特征图,每个感受野对应一个独立的滑动窗口。然后调整形状,将感受野空间特征图...
整体结构:以3×3卷积核为例,RFAConv的整体结构包括输入特征图经过快速提取感受野空间特征(如Group Conv)、信息聚合(AvgPool)、信息交互(1×1组卷积)和特征重要性强调(softmax)等操作,最终得到注意力图与变换后的感受野空间特征相乘的结果。 与其他模块的关系:RFAConv可视为一个轻量级的即插即用模块,它所设计的卷积...
returnself.conv(conv_data) 最后在yolo.py中完成RFAConv模块注册。 模型训练与ONNX导出 基于OID数据集中的大象与骆驼数据集,用下面的命令行开启YOLOv5 + RFAConv修改后的模型训练。注意这里weights参数必须设置为空,意思是从指定的yaml文件开始从零训练模型,命令行如下: 运行完成以后执行,看到的PR曲线 导出ONNX格式...
RFA是为了解决空间注意力机制问题而提出的,创新了空间注意力。使用与RFA相同的思想,一系列空间注意力机制可以再次提高性能。RFA设计的卷积运算可以被视为一种轻量级的即插即用模块,以取代标准卷积,从而提高卷积神经网络的性能。因此,作者认为空间注意力机制和标准卷积在未来将有一个新的春天。 感受野的空间特征: 现在给...
RFAConv:创新空间注意力和标准卷积运算 2.1 结构 整体结构:以3×3卷积核为例,RFAConv的整体结构包括输入特征图经过快速提取感受野空间特征(如Group Conv)、信息聚合(AvgPool)、信息交互(1×1组卷积)和特征重要性强调(softmax)等操作,最终得到注意力图与变换后的感受野空间特征相乘的结果。 与其他模块的关系:RFAConv...
YOLOv5是目标检测模型,它通过C3融合、RFAConv和模块缝合等技术来增强感受野空间特征。1. C3融合:将三个不同尺寸的特征图进行融合,以提高特征图的空间维度,从而增强模型的识别能力。2. RFAConv:一种基于卷积神经网络的快速傅里叶变换(Fast Fourier Transform)算法,用
最后在yolo.py中完成RFAConv模块注册。 模型训练与ONNX导出 基于OID数据集中的大象与骆驼数据集,用下面的命令行开启YOLOv5 + RFAConv修改后的模型训练。注意这里weights参数必须设置为空,意思是从指定的yaml文件开始从零训练模型,命令行如下: python train.py –weights ‘’–cfg ./model/yolov5n-rfa.yaml –dat...
即插即用模块 | RFAConv助力YOLOv8再涨2个点(一) 空间注意力已经被证明能够使卷积神经网络专注于关键信息来提高网络性能,但它仍然有局限性。 本文中从一个新的角度解释了空间注意力的有效性,即空间注意力机制本质上解决了卷积核参数共享的问题。然而,对于大尺寸卷积核,空间注意力生成的注意力图中包含的信息仍然...
最后在yolo.py中完成RFAConv模块注册。 模型训练与ONNX导出 基于OID数据集中的大象与骆驼数据集,用下面的命令行开启YOLOv5 + RFAConv修改后的模型训练。注意这里weights参数必须设置为空,意思是从指定的yaml文件开始从零训练模型,命令行如下: python train.py –weights ‘’–cfg ./model/yolov5n-rfa.yaml –dat...
最后在yolo.py中完成RFAConv模块注册。 模型训练与ONNX导出 基于OID数据集中的大象与骆驼数据集,用下面的命令行开启YOLOv5 + RFAConv修改后的模型训练。注意这里weights参数必须设置为空,意思是从指定的yaml文件开始从零训练模型,命令行如下: python train.py –weights ‘’–cfg ./model/yolov5n-rfa.yaml –dat...