na_values:用于指定要视为空值的标记。 parse_dates:用于将指定列解析为日期。 read_csv()函数的不同参数选项的应用场景 指定分隔符 有时候,CSV文件可能使用除逗号以外的分隔符,可以使用sep参数来指定分隔符。 import pandas as pd # 使用分号作为分隔符读取CSV数据 df = pd.read_csv('data_semicolon.csv', ...
pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default, delimiter=None, header='infer', names=NoDefault.no_default, index_col=None, usecols=None, squeeze=None, prefix=NoDefault.no_default, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_value...
pd.read_csv('girl.csv', sep="\t", true_values=["对"], false_values=["错"]) 1. 注意这里的替换规则,只有当某一列的数据全部出现在true_values + false_values里面,才会被替换。 pd.read_csv('girl.csv', sep="\t", false_values=["错"]) 1. 我们看到"错"并没有被替换成False,原因就是...
pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default, delimiter=None, header='infer', names=NoDefault.no_default, index_col=None, usecols=None, squeeze=None, prefix=NoDefault.no_default, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_value...
read_csv('data.csv', converters={'column1': int, 'column2': int}) 缺失值处理: Pandas提供了多种处理缺失值的方法。你可以使用na_values参数来指定应视为缺失值的额外字符串。例如,将任何包含“NaN”的单元格视为缺失值: data = pd.read_csv('data.csv', na_values=['NaN']) 限制数据行数: ...
read_csv()函数在pandas中用来读取文件(逗号分隔符),并返回DataFrame。 2.参数详解 2.1 filepath_or_buffer(文件) 注:不能为空 filepath_or_buffer: str, path object or file-like object 1 设置需要访问的文件的有效路径。 可以是URL,可用URL类型包括:http, ftp, s3和文件。
pandas.read_csv(filepath_or_buffer,sep=NoDefault.no_default,delimiter=None,header='infer',names=NoDefault.no_default,index_col=None,usecols=None,squeeze=None,prefix=NoDefault.no_default,mangle_dupe_cols=True,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspac...
read_csv函数详解 首先,我们先看一下read_csv函数有哪些参数(pandas版本号为1.2.1):pd.read_csv( filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, ...
pandas.read_csv(filepath_or_buffer,sep=NoDefault.no_default,delimiter=None,header='infer',names=NoDefault.no_default,index_col=None,usecols=None,squeeze=None,prefix=NoDefault.no_default,mangle_dupe_cols=True,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspac...
pandas.read_csv函数的主要参数详解如下:filepath_or_buffer:指定要读取的CSV文件的路径或文件对象。sep:指定CSV文件中的分隔符,默认为逗号。允许自定义分隔符。delimiter:备用分隔符选项,如果同时设置了此参数和sep,则优先使用delimiter。header:若数据集无列名,则设置为None。若以第一行为列名,则...