既然是csv文件(Comma-Separated Values),所以read_csv的默认sep是",",然而对于那些不是","分隔符的文件,该默认参数下显然是不能正确解析的。此时,当然可以简单的通过传入正确的分隔符作为sep参数来实现正确加载,但如果文件的分隔符是未知的呢?实际上,我们可以无需传入分隔符,而交由解析器自动解析。 查看pd.read_...
na_values指定哪些值应视为缺失值(NaN)None skipfooter跳过文件结尾的指定行数0 encoding文件的编码格式(如utf-8,latin1等)None 读取nba.csv 文件数据: 实例 importpandasaspd df=pd.read_csv('nba.csv') print(df.to_string()) to_string()用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据...
pd.read_csv(filepath_or_buffer:Union[str,pathlib.Path,IO[~AnyStr]],sep=',',delimiter=None,header='infer',names=None,index_col=None,usecols=None,squeeze=False,prefix=None,mangle_dupe_cols=True,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,s...
pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default**,** delimiter=None**,** header='infer’, names=NoDefault.no_default**,** index_col=None**,** usecols=None**,** squeeze=False**,** prefix=NoDefault.no_default**,** mangle_dupe_cols=True**,** dtype=None**,** engi...
在数据分析和处理领域,CSV(Comma-Separated Values)文件是一种常见且重要的数据存储格式,它以纯文本形式存储表格数据,数据的各字段之间通常用逗号分隔。Pandas 作为 Python 中强大的数据处理库,提供了丰富的功能来读取、写入和处理 CSV 文件。以下是关于 Pandas 处理 CSV 文件的详细介绍: ...
pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default, delimiter=None, header='infer', names=NoDefault.no_default, index_col=None, usecols=None, squeeze=None, prefix=NoDefault.no_default, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_...
read_csv函数的第一个参数是filepath_or_buffer,从参数名我们很容易理解参数的含义。很显然,这个参数用来指定数据的路径的。从官方文档中我们知道这个参数可以是一个str对象、path对象或者类文件对象。 如果是一个str对象,这个str对象必须是一个有效的文件路径: ...
df=pd.read_csv('btc-market-price.csv',header=None)df.head() image.png 使用na_values参数处理缺失值 我们可以使用na_values参数定义我们希望被识别为 NA/NaN 的值。在这种情况下,空字符串''、?和-将被识别为 null 值。 df=pd.read_csv('btc-market-price.csv',header=None,na_values=['','?',...
pandas.read_csv分块读取大文件 最近,下载了一个csv结构的数据集,有1.2G。对该文件试图用pd.read_csv进行读取的时候,发现出现内存不足的情况 ,电脑内存不足,不能一次性的读取。此时我们就需要对csv文件进行分块读取。 在对数据进行分块读取之前,我们需要对pd.read_csv()中的参数进行一定的了解,pandas.read_...
pandas.read_csv() 是 pandas 库中的一颗明星函数,专门用来读取CSV文件。CSV(Comma-Separated Values,逗号分隔值)文件是数据交换的“外卖盒”,每一份数据就像盒子里的食材,按照特定格式被分隔开来,方便我们快速拿取。用 read_csv() 函数,我们可以轻松把这些分隔开的食材(数据)装进一个DataFrame“锅”里,...