通过对比SEND/RECV和WRITE/READ操作,我们可以发现传输数据时不需要响应端CPU参与的WRITE/READ有更大的优势,缺点就是请求端需要在准备阶段获得响应端的一段内存的读写权限。但是实际数据传输时,这个准备阶段的功率和时间损耗都是可以忽略不计的,所以RDMA WRITE/READ才是大量传输数据时所应用的操作类型,SEND/RECV通常只是...
WRITE全称是RDMA WRITE操作,是本端主动写入远端内存的行为,除了准备阶段,远端CPU不需要参与,也不感知何时有数据写入、数据在何时接收完毕。所以这是一种单端操作。 通过下图我们对比一下WRITE和SEND-RECV操作的差异,本端在准备阶段通过数据交互,获取了对端某一片可用的内存的地址和“钥匙”,相当于获得了这片远端内存...
通过对比SEND/RECV和WRITE/READ操作,我们可以发现传输数据时不需要响应端CPU参与的WRITE/READ有更大的优势,缺点就是请求端需要在准备阶段获得响应端的一段内存的读写权限。但是实际数据传输时,这个准备阶段的功率和时间损耗都是可以忽略不计的,所以RDMA WRITE/READ才是大量传输数据时所应用的操作类型,SEND/RECV通常只是...
传输数据时不需要响应端CPU参与的WRITE/READ有更大的优势,缺点就是请求端需要在准备阶段获得响应端的一段内存的读写权限。但是实际数据传输时,这个准备阶段的功率和时间损耗都是可以忽略不计的,所以RDMA WRITE/READ才是大量传输数据时所应用的操作类型,SEND/RECV通常只是用来传输一些控制信息; “写”第6步回复ACK之...
一、Send/RecvSend/Recv是一种两端cpu都需要参与的双端操作,并且Recv端需要提前显式的下发WQE(工作队列元素,也就是任务)给硬件,否则硬件无法知道该怎么处理接收到的数据(例如把数据保存到内存的哪个地方)。如下图所示,左边计算机1是发送端,右边计算机2是接受端。发送
其中,write和read操作中的fd是标识一个连接的文件描述符。应用程序要发送的数据,会通过write拷贝到系统内核缓冲区中;而read实际上也是从系统内核缓冲区中将数据拷贝出来。在绝大多数应用程序里,通常都会设置fd为非阻塞的,也就是说,如果系统内核缓冲区已满,write操作会直接返回;而如果系统内核缓冲区为空,read...
6.1 RDMA Send | RDMA发送(/接收)操作 (Send/Recv) 6.2 RDMA Read | RDMA读操作 (Pull) 6.3 RDMA Write | RDMA写操作 (Push) 6.4 RDMA Write with Immediate Data | 支持立即数的RDMA写操作 ...
RDMA提供基于两种操作原语的数据传输服务:单边操作包括RDMA READ、WRITE、ATOMIC(例如,FAA、CAS),双边操作包括RDMA SEND、RECV。RDMA通信是通过一个消息队列模型实现的,称为队列对(QP)和完成队列(CQ)。QP包括发送队列(SQ)和接收队列(RQ)。发送方将请求提交到SQ(单边或双边操作),而RQ用于在双边操作中排队RDMA RECV...
对于RDMA的Send和Receive这种双边操作,发送端在发送完成后能收到CQE,接收端在接收完成后也能收到CQE;对于RDMA的Read和Write这种单边操作,比如节点A从节点B读数据,或节点A往节点B写数据,只有发起Read和Write操作的一端,即节点A在操作结束后能收到CQE,另一端节点B完全不会感知到节点A发起的Read或Write操作,...
对于RC服务类型来说,在节点间通过基于Socket的数据交互掌握了彼此的GID + QPN之后,会通过Modify QP的动作将相关信息记录到QPC中。一切就绪之后,就可以进行Send/Recv双边操作了,但是如果想要进行单边的RDMA Write/Read操作,这些信息是还不够的。 VA 它指的是想要通过RDMA技术进行通信的进程的某个虚拟地址,这个地址上...