SSD相比YOLO有以下突出的特点: 多尺度的feature map:基于VGG的不同卷积段,输出feature map到回归器中。这一点试图提升小物体的检测精度。 更多的anchor box,每个网格点生成不同大小和长宽比例的box,并将类别预测概率基于box预测(YOLO是在网格上),得到的输出值个数为(C+4)×k×m×n,其中C为类别数,k为box个数...
SSD结合YOLO的回归思想以及Faster R-CNN的anchor机制做到了这点。 上图是SSD的一个框架图,首先SSD获取目标位置和类别的方法跟YOLO一样,都是使用回归,但是YOLO预测某个位置使用的是全图的特征,SSD预测某个位置使用的是这个位置周围的特征(感觉更合理一些)。 那么如何建立某个位置和其特征的对应关系呢?可能你已经想到...
②YOLO将图片均分分成S*S个锚框 ③每个锚框预测B个边缘框 补充: ①yolo 也是一个 single-stage 的算法,只有一个单神经网络来做预测 ②yolo 也需要锚框,这点和 SSD 相同,但是 SSD 是对每个像素点生成多个锚框,所以在绝大部分情况下两个相邻像素的所生成的锚框的重叠率是相当高的,这样就会导致很大的重复计...
(3)设置先验框 在Yolo中,每个单元预测多个边界框,但是其都是相对这个单元本身(正方块),但是真实目标的形状是多变的,Yolo需要在训练过程中自适应目标的形状。而SSD借鉴了Faster R-CNN中anchor的理念,每个单元设置尺度或者长宽比不同的先验框,预测的边界框(bounding boxes)是以这些先验框为基准的,在一定程度上减少训...
2. SSD(Single Shot Detection) 3.YOLO系列 这一节主要介绍了比较经典的物体检测算法,大体上做了一个了解,但是对于每个算法的详细过程还有待后续的继续学习。 1. R-CNN系列(Region-based CNN) 区域卷积神经网络(region-based CNN,R-CNN)[Girshick et al., 2014]是将深度模型应用于目标检测的开创性工作之一。
从R-CNN到YOLO与SSD,目标检测算法在速度、精度和实用性上不断取得突破。每种算法都有其独特的优势和适用场景,如R-CNN的高精度、Fast R-CNN的速度提升、Faster R-CNN的端到端训练、YOLO和SSD的实时检测能力。在实际应用中,我们可以根据具体需求选择合适的算法,或结合多种算法的优势进行进一步优化和创新。 实践建议...
SSD全称Single Shot Multibox Detector,是一种单阶段目标检测器。其优点是原始的YOLO和Faster R-CNN在推理速度和精度之间取得了更好的平衡。SSD模型是由Wei Liu等人在使用卷积神经网络(CNN)进行目标检测的研究中,提出的一种改进思路。 SSD用于图像分类、物体检测和语义分割等各种深度学习任务。相对于其他目标检测算法,...
本文将简要介绍目标检测的基本原理,以及R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等主流目标检测算法的原理和优缺点。 一、目标检测的基本原理 目标检测的基本原理可以分为两个阶段:区域选择和特征提取与分类。在区域选择阶段,算法会在输入图像中选择一些候选区域,这些区域可能包含目标物体。在特征提取与分类阶段,...
本文旨在开发一个能够准确检测和分割视频中物体的计算机视觉系统。我将使用最先进的三种SoA(State-of-the-Art)方法:YOLO、SSD和Faster R-CNN,并评估它们的性能。然后,我通过视觉分析结果,突出它们的优缺点。接下来,我根据评估和分析确定表现最佳的方法。我将提供一个链接,展示最佳方法在视频中的表现。
YOLO (You Only Look Once), RCNN (Region-based Convolutional Neural Networks), Faster R-CNN, SSD (Single Shot MultiBox Detector) 等算法都是用于目标检测的经典算法,它们在实现目标检测任务时有一些区别。 YOLO: YOLO 是一种单阶段(single-stage)目标检测算法,其核心思想是将目标检测问题转化为一个回归问...