因为你要框住的待检测目标是在原图,而你选取anchor是在特征图上,pooling之后特征之间的相对位置不变,但是尺寸缩小为原来的1/16,也就是说,一个点对应于原图的16个点的信息,原图和特征图对应的感受野是不一样的,而你的anchor目的是为了框原图的目标的,如果不remap回原图的话,你一个base_size的anchor基本就框住了...
1 Faster-RCNN的数据读取及预处理部分:(对应于代码的/simple-faster-rcnn-pytorch-master/data文件夹) 2 Faster-RCNN的模型准备部分:(对应于代码目录/simple-faster-rcnn-pytorch-master/model/utils/文件夹) 3 Faster-RCNN的模型正式介绍:(对应于代码目录/simple-faster-rcnn-pytorch-master/model/文件夹) 下...
1 Faster-RCNN的数据读取及预处理部分:(对应于代码的/simple-faster-rcnn-pytorch-master/data⽂件夹)2 Faster-RCNN的模型准备部分:(对应于代码⽬录/simple-faster-rcnn-pytorch-master/model/utils/⽂件夹)3 Faster-RCNN的模型正式介绍:(对应于代码⽬录/simple-faster-rcnn-pytorch-master/model/⽂...
1 Faster-RCNN的数据读取及预处理部分:(对应于代码的/simple-faster-rcnn-pytorch-master/data文件夹):https://www.cnblogs.com/kerwins-AC/p/9734381.html 2 Faster-RCNN的模型准备部分:(对应于代码目录/simple-faster-rcnn-pytorch-master/model/utils/文件夹):https://www.cnblogs.com/kerwins-AC/p/975...
1 Faster-RCNN的数据读取及预处理部分:(对应于代码的/simple-faster-rcnn-pytorch-master/data文件夹):https://www.cnblogs.com/kerwins-AC/p/9734381.html 2 Faster-RCNN的模型准备部分:(对应于代码目录/simple-faster-rcnn-pytorch-master/model/utils/文件夹):https://www.cnblogs.com/kerwins-AC/p/975...