RCNN即region proposals(候选区域) + CNN,是将CNN引入目标检测领域的开山之作(2014年),大大提高了目标检测的效果,在其后也是出现了更优异的变体Fast RCNN, Faster RCNN。 下文按照RCNN的工作过程依次介绍 1. 生成候选区域 获取候选区域最直接的方式就是滑窗法了,但是滑窗法需要用一个固定大小的小窗口遍历整张...
第二步:用Imagenet 初始化共享cov 部分初始化Fast-rcnn网络,这里是重新初始化。然后使用训练过的RPN来计算proposal,再将proposal给予Fast-rcnn网络。接着训练Fast-rcnn。训练完以后,共享cov 以及Fast-rcnn的特有部分都会被更新。 第三步:使用第二步训练完成的 共享cov 来初始化RPN网络,第二次训练RPN网络。但是这...
iv: RCNN_roi_align,使用roi_align方法将128个anchor每个都切成7x7的块, 输出为pooled_feat, shape=(batch*128, 512, 7, 7). v: _head_to_tail,全连接层: (batch*128, 512*7*7) --> (batch*128, 4096). vi: RCNN_cls_score,全连接层用做分类, 预测score, (batch*128, 4096) --> (batch...
在该目录下,有fast_rcnn,faster_rcnn_alt_opt,faster_rcnn_end_to_end三套模型结构,各自有所不同。 fast_rcnn即fast_rcnn方法,它下面只包含了train.prototxt,test.prototxt,solver.prototxt三个文件,它对rcnn的改进主要在于重用了卷积特征,没有region proposal框架。 faster_rcnn_alt_opt,faster_rcnn_end_t...
ProposalLayer是RPN网络中为检测目标而生成推荐建议区Rois,生成的Rois注入DetectionTargetLayer,用于生成训练标签。这里主要是详细分析下MASK_RCNN代码详解(2)-RPN部分中第2.3小节中的推荐建议区Rois的生成过程。 --- 生成rpn_rois经历以下几个步骤: 根据rpn_class中的前景分数筛选出top_6000的indices 根据indices筛选sco...
目标检测算法-Faster-RCNN代码详解 Faster-RCNN是基于VGG-16的网络结构,Faster-RCNN的提出为了改进Fast-RCNN中存在的问题。Fasr-RCNN中存在了一个较大的问题,就是selective search候选框,Fastr-RCNN中引入了一个专门的生成候选框的区域的神经网络,也就是选择候选框的工作也交给神经网络来做了,这就引入了RPN...
目标检测算法-Faster-RCNN代码详解 Faster-RCNN是基于VGG-16的网络结构,Faster-RCNN的提出为了改进Fast-RCNN中存在的问题。Fasr-RCNN中存在了一个较大的问题,就是selective search候选框,Fastr-RCNN中引入了一个专门的生成候选框的区域的神经网络,也就是选择候选框的工作也交给神经网络来做了,这就引入了RPN...
MaskRCNN(Facebook官网Pytorch版本) Resnet部分 首先来看有FPN的Resnet是如何搭建的,我们假设所使用的模型是ResnetTop5 class ResNet(nn.Module): def __init__(self, cfg): super(ResNet, self).__init__() # If we want to use the cfg in forward(), then we should make a copy # of it an...
在深入理解Faster-RCNN的实现过程中,关键部分是fasterRCNN.pytorch中的核心代码。首先,我们关注的是网络的输入数据,包括:coco数据集: 使用的预训练模型基于ResNet,锚框数量为3乘以4,即12个。原始图像(P, Q)的尺寸不变,而输入网络(M, N)的图像是经过resize处理后的。 图像数据: im_data是...
从如图1可以看出,faster r-cnn又包含了以下4重要的部分: 1. Conv layers 这里应该理解为基本卷积网络(base net).通过该网络来提取原始图片的featuremap特征,最后将这些特征送入RPN网络和RCNN网络。有一点需要注意的就是,真正送入RPN网络的featuremap其实并不是整张图片的产生的featuremap,具体怎么选择,后面仔细说明...