如图1.1所示,Faster RCNN 的整体框架按照功能区分,大致分为4个模块,分别是特征提取网络backbone模块、RPN模块、RoI and RoI pooling模块和RCNN模块。 图1.1 Faster RCNN 整体框架 Backbone模块:主要负责接收输入数据,并进行数据预处理和特征提取得到输入图像对应的feature maps,并传递给下一层。这部分论文中用的VGG16...
1.1基本CNN【例如‘VGG’,'RESnet‘等】 首先由于输入的图片可能会存在尺寸不同的问题,例如 900X600 的图片和 800X500 的图片无法输入到同一个基础CNN中,因此需要将输入图片统一,此处为设置为 900X600。 最初的图片在经过尺寸统一处理后,要放入卷积网络中,并产生Faster RCNN最初的输入feature map【512X37X50】(...
iv: RCNN_roi_align,使用roi_align方法将128个anchor每个都切成7x7的块, 输出为pooled_feat, shape=(batch*128, 512, 7, 7). v: _head_to_tail,全连接层: (batch*128, 512*7*7) --> (batch*128, 4096). vi: RCNN_cls_score,全连接层用做分类, 预测score, (batch*128, 4096) --> (batch...
二、 Fast R-CNN详解 接下来,我们对Fast R-CNN进行详细解析,并与R-CNN进行对比。在这篇这篇笔记中,我们将从RoI池化层、多任务损失、小批量采样等方面进行详细讲解。 2.1 R-CNN简单回顾 首先回归下R-CNN的整体框架: 利用选择性搜索(SS)算法获取约2000个推荐区域; 然后将所有推荐区域转换尺寸后送入AlexNet进行...
Fast R-CNN就是在R-CNN的基础上采纳了SPP Net的方法,使得性能进一步提高。 与R-CNN相比,Fast R-CNN主要有两点不同:一是最后一个卷积层加入了ROI pooling layer,二是损失函数使用了多任务损失函数(multi-task loss),将边框回归Bounding Box Regression直接加入到CNN网络中训练 ...
FasterRCNN结构的代码主要见./model.faster_rcnn.py,其结构包含三大部分: 预训练的CNN模型decom_vgg16 rpn网络RegionProposalNetwork roi及以上网络VGG16RoIHead 下面,将以放缩后大小为[1, 3, 600, 800]的图片为例针对每个部分分别介绍。图像类别共计21类(包含背景)。
Fast R-CNN是一个基于区域的目标检测算法。Fast R-CNN建立在先前的工作之上,并有效地使用卷积网络分类目标建议框。与先前的工作相比,使用几点创新改善了训练和测试时间并增加了检测准确率。 2. Fast R-CNN结构和训练 图1展示了Fast R-CNN的结构。该网络输入一个完整的图像和一组目标建议框。首先用卷积和池化来...
Fast_R-CNN Caffe代码 本质上它相对于SPP-Net的主要改进在于将原来R-CNN框架下分为三个阶段去做的事情整合为一个阶段,反映在caffe model 上面即是最终的loss层实现了多目标损失函数学习。另外因为ROI层也是SPP层的一个特例,因此我们也放在这里。 ---ROI层--- layer{name: "roi_pool5" type: "ROIPooling" ...
1.1基础:RCNN 简单来说,RCNN使用以下四步实现目标检测: a. 在图像中确定约1000-2000个候选框 b. 对于每个候选框内图像块,使用深度网络提取特征 c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 d. 对于属于某一特征的候选框,用回归器进一步调整其位置 ...
首先,我们来回顾一下Fast R-CNN之前的目标检测算法——RCNN。RCNN在处理图像时,首先会对图像进行候选框提取,然后对每个候选框进行特征提取和分类。然而,这种做法存在三个主要问题:测试速度慢、训练速度慢和训练所需空间大。Fast R-CNN正是针对这些问题进行了改进。 Fast R-CNN的主要思想是将整张图像归一化后直接...