rank(a b)<=rank(a) rank(b) 设A是m*n的矩阵,B是n*s的矩阵,将矩阵A按行分块,A=(a1,a2……am)T,T表示转置 那么AB=(a1B,a2B……amB)T, 设A的秩为r 不妨设A的行向量的极大无关组为a1,a2……ar(也就是r个向量组成A的行向量的极大无关组),那么A的任何一个行向量都可以用A的行向量的...
ai1,...,ais 与 bj1,...,bjt 分别是 a1,...,am 与 b1,...bn 的一个极大无关组则a1,...,am ,b1,...bn 可由 ai1,...,ais , bj1,...,bjt 线性表示所以r(A,B) = r(a1,...,am ,b1,...bn) <= r( ai1,...,ais , bj1,...,bjt )<= s + t = r(A) +r(B) ...
由定理5rankAB≤rankA再考虑核Ker(B)与Ker(AB)。显然, K_(er(B)⊆Ke)(AB)因此, dimHe_e(B)≤di ,由定理3与定理5dimH_(co)(B)=p-dim]=p-rankB ≤dimKer(AB)=p-rankAB ,所以rankAB≤rank_2B. 反馈 收藏
证明rankAB≤min(rankA,rankB) 相关知识点: 试题来源: 解析 证记C=AB,且rankB=t, rank=r_1 设矩阵B的n个行向量分别为β1,β,…,B.,矩阵C的m个行向量分别为Y1,Y…,Y,它们都是数域F上行向量空间F'中的向量。由于C=AB因此,Y1=a11+a2B+…+a,β,1≤i≤m这表明,向量Y1,Y2,…,Y可由向...
在矩阵a和b内分别选取线性不相关的列向量组组成新的列向量组,但是显然新的列向量组不一定是线性无关...
rankab与ranka rankb的关系 我们先证明(A+B)X=0可以推出AX=0且BX= 0,0=A(A+B)X=A^2X,由于rankA^2=rankA且任意AX=0的解为A^2X=0的解,我们有AX=0与A^2X=0的解空间相等,于是A^2X=0推出AX= 0,此时当然有BX= 0. 为了估计rank(A+B)的值,我们由上面的探索得到启示去估计(A+B)X=0的解...
证明:rank(A+B)≤rank(A)+rank(B). A. 参考答案:×设A,B均为m×n矩阵,则 进入题库练习 查答案就用赞题库小程序 还有拍照搜题 语音搜题 快来试试吧 无需下载 立即使用 你可能喜欢 单项选择题 滑行道桥桩基础施工采用钻孔灌注桩时,清孔排渣必须注意保持( ),防止坍孔。A. 泥浆相对密度###SXB 滑...
A,B=0时,显然成立.正方向,如果B^2=B=BA,A^2=A=AB,rank(B)= rank(BA)≤ rankA (Sylvester's rank inequality),rank(A)=rank(AB)≤ rank(B)这说明 rank(A)=rank(B)反方向,如果rank(A)=rank(B),因为A^2=A=AB,(B)A=BA^2=(BA)A,所以 B=BA,B^2=(BA)^2=BA(BA)=BAB=...
求证rank(A,B)<=rankA+rankB AB是相同行数的矩阵(A,B)是A,B并排组成的矩阵... A B是相同行数的矩阵 (A,B)是A,B并排组成的矩阵 展开 1个回答 #热议# 职场上受委屈要不要为自己解释?尹六六老师 2014-12-03 · 知道合伙人教育行家 尹六六老师 知道合伙人教育行家 采纳数:33776 获赞数:...
矩阵rank已知A是一个m×n的矩阵,B是一个n×p的矩阵.(1)证明:rank(AB)<= rank(A)(2)证明:rank(AB)<= rank(B)(