第二步:将数据加载到集合中 创建好集合之后,我们可以向集合添加向量数据,在Qdrant中向量数据使用point表示,一条point数据包括三部分id、payload(关联数据)、向量数据(vector)三部分。 现在集合已经设置好了,接下来我们添加一些数据。每个位置都会有一个向量和一些额外的信息(称为 payload),比如它的名字。 运行以下请求...
向量数据库是一种组织有序的向量嵌入集合,整合了可以随时创建、读取、更新和删除的向量嵌入。向量嵌入将数据块 (例如文本或图像) 表示为数值。向量数据库主要用于图像检索、音频检索、文本检索等领域,其主要特点是能够高效地存储和检索大规模的向量数据。向量数据库用专门的数据结构和算法来处理向量之间的相似性计算和查...
Pinecone向量数据库是一个云原生的向量数据库,具有简单的API和无需基础架构的优势。 它可以快速处理数十亿条向量数据,并实时更新索引。 同时,它还可以与元数据过滤器相结合,以获得更相关、更快速的结果。 Pinecone是完全云托管的,容易上手、扩展轻松,用户可以放心使用。人们常常把大语言模型比喻成大脑,但这是一...
其次在检索效率方面,由于信息可以表示成高维向量,针对向量加上特殊的索引优化和量化方法,可以极大提升检索效率并压缩存储成本,随着数据量的增长,向量数据库能够水平扩展,保持查询的响应时间,这对于需要处理海量数据的 RAG 系统至关重要,因此向量数据库更擅长处理超大规模的非结构化数据。 至于泛化能力这个维度,传统的搜索...
传统RAG 的局限性 经典的 RAG 架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示: 这一架构目前广泛应用于各类 AI 业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽
总之,向量距离是许多机器学习任务和应用的基石,选择合适的向量距离对算法的能力及其捕捉向量数据之间关系至关重要。 有哪些向量相似度类型? 1、欧氏距离 Euclidean distance 欧氏距离度量两个实值向量之间的最短距离。由于其直观,使用简单和对许多用例...
SQL 和向量的原生兼容性 自从 SQL 诞生半个世纪以来,尽管其中经历了 NoSQL、大数据等浪潮,不断进化的 SQL 数据库还是占据了数据管理市场主要份额,甚至 Elasticsearch、Spark 等检索和大数据系统也陆续支持了 SQL 接口。而专用的向量数据库尽管为向量做了优化和系统设计,但其查询接口通常缺乏规范性,没有高级的查询...
RAG 检索的底座:向量数据库 在业界实践中,RAG 检索通常与向量数据库密切结合,也催生了基于 ChatGPT + Vector Database + Prompt 的 RAG 解决方案,简称为 CVP 技术栈。 这一解决方案依赖于向量数据库高效检索相关信息以增强大型语言模型(LLMs),通过将 LLMs 生成的查询转换为向量,使得 RAG 系统能在向量数据库中...
向量数据库是一种专门用于存储和检索向量数据(embedding)的数据库系统。 在向量数据库中,数据被表示为向量形式,每个向量代表一个数据项。这些向量可以是数字、文本、图像或其他类型的数据。向量数据库使用高效的索引和查询算法来加速向量数据的存储和检索过程。原理...
实时更新知识库。 缓存之前LLM提示/应答,以改进性能降低成本。 由此可见,向量数据库在生成式AI中起到的重要作用,这也是当前众多数据库纷纷增加向量存储功能的原因。 以上内容是关于LLM中Retriveal Augmented Generation(RAG)和向量数据库的简介。暂时是这一系列的最后一篇,后续会继续发布MySQL的相关内容。