(2)Q-learning算法 (3)SARSA算法 (4)比较说明 (5)Q-learning算法源码(以路径规划为例) 写在前面: 本篇总结经典的Model-free算法——Q-learning 和SARSA算法,对Q-learning算法的源码进行了测试和解读! 正文: (1)表格型方法(tabular method) 基本描述: Agent有一张已经训练好的表格,通过查看表格,判断某个状态...
Q-learning算法的目标是通过不断更新Q值表格,使得智能体能够在环境中找到最优策略,以最大化累积奖励。 二、无人机物流路径规划 无人机物流路径规划是指利用无人机进行货物运输时,通过算法和技术使其无人机将所有货物运送到指定位置,并返回起点,并得到最优飞行路径,以实现高效、安全和准确的货物运输。无人机物流路...
Q-learning算法的目标是通过不断更新Q值表格,使得智能体能够在环境中找到最优策略,以最大化累积奖励。 二、无人机物流路径规划 无人机物流路径规划是指利用无人机进行货物运输时,通过算法和技术使其无人机将所有货物运送到指定位置,并返回起点,并得到最优飞行路径,以实现高效、安全和准确的货物运输。无人机物流路...
而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。 三、Q-learning求解物流配送路径规划 3.1部分Py...
下面是实现三维路径规划算法的步骤: 步骤1:定义状态、动作和奖励 在路径规划中,我们需要定义状态、动作和奖励。状态表示路径上的一个位置,动作表示从一个状态移动到另一个状态的操作,奖励表示在某个状态执行某个动作后的回报。 classState:def__init__(self,state_id,x,y,z):self.state_id=state_id ...
在每个时间步,Q-learning根据以下更新规则更新Q值: 3.2 基于Q-learning的路径规划算法设计 在路径规划中,状态可以表示机器人所处的位置坐标,动作可以表示机器人可以向上、下、左、右等方向移动。将Q值初始化为一个小的随机值或零。 可以通过逐渐减小学习率和折扣因子,或者使用不同的策略来调优算法,以实现更好的性能...
Q-Learning它是强化学习中的一种 values-based 算法,是以QTable表格形式体现,在学习中遇到的任何操作存入QTable中,根据之前的学习选择当前最优操作,也可以根据设置的e_greedy机率随机选择。 Q-Learning的QTable标签更新公式: Q-Learning的计算步骤: ...
Q-learning机器人路径规划算法 机器人路径规划,机器人路径避障。求解常见的路径规划问题。内含算法的注释,模块化编程。 强化学习中的价值学习算法是一类重要的强化学习算法,它们通过学习价值函数来指导智能体的行为选择。价值函数表示在特定状态下,智能体采取不同行动所能获得的长期累积回报的期望值。Q学习是一种基于状态...
强化学习是一种机器学习方法,它使智能体能够在与环境交互的过程中学习如何采取行动以最大化累积奖励。Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器人学习如何在未知环境中寻找到达目标的最短路径,同时避免碰撞障碍物。