基于Q-Learning的机器人避障和路径规划是一种有效的解决方案。通过不断学习和更新Q表,机器人可以学会如何在复杂环境中规划路径并避免碰撞障碍物。未来的研究方向可以包括引入更多的状态特征、使用连续动作空间的强化学习算法(如DQN或DDPG)等,以应对更加复杂的环境和更高的计算效率需求。 3.MATLAB核心程序 % 更新Q表 Q...
Q-learning 是强化学习中一种经典且有效的方法,应用广泛,特别适合处理离散状态空间和动作空间的问题。 2 运行结果 部分代码: function [ Qtable] = QLearningFunction( name ) model = xlsread(name) % initial Q tables for up, right, down, left Q1 = zeros(size(model)); %up Q2 = zeros(size(mode...
Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器人学习如何在未知环境中寻找到达目标的最短路径,同时避免碰撞障碍物。 2.1 Q-Learning原理 Q-Learning是一种基于价值迭代的算法,其目标是找到一个策略,使得在给定状态下选择的动作能够最大化未来...
通过 Q - Learning,机器人可以学习到从初始位置到目标位置的最优路径规划策略。在机器人路径规划问题中,机器人即为智能体,其所处的大规模栅格地图及相关物理规则等构成了环境 。智能体通过传感器感知环境的状态,并根据学习到的策略在环境中执行动作,如向上、向下、向左、向右移动等,环境则根据智能体的动作反馈相应的...
1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 机器人行驶动作序列: Action_seqs = '下下下下右右下下下下下下下下下下下下右右上上上上上上上上上上上右右右下右下下下下下下右右上上上上右右右右右下右下下下下下右下右右上上上上上上上上上上上' ...
1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 2.算法涉及理论知识概要 强化学习是一种机器学习方法,它使智能体能够在与环境交互的过程中学习如何采取行动以最大化累积奖励。Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器...
Q-Learning它是强化学习中的一种 values-based 算法,是以QTable表格形式体现,在学习中遇到的任何操作存入QTable中,根据之前的学习选择当前最优操作,也可以根据设置的e_greedy机率随机选择。 Q-Learning的QTable标签更新公式: Q-Learning的计算步骤: ...
简介:本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作...
移动无人车自动路径规划之深度强化学习(Deep Reinforcement Learning) 267 -- 0:40 App MATLAB无人机集群路径规划(一):孔雀优化算法POA 428 -- 0:30 App ORCA SIM 仿真平台再升级,支持mujoco物理引擎,openai gym 强化学习训练框架😎 405 -- 2:02 App 智能优化算法寻优过程示意图MATLAB 709 -- 0:42 Ap...