1.摘要内容理解: 这篇论文的核心发现是什么? (答案位于“ABSTRACT”小节) 这篇论文的核心发现是关于离线强化学习(Offline Reinforcement Learning, RL)的一个新方法:通过隐式值正则化(Implicit Value Regularization, IVR)来优化学习过程。作者提出了一个称为稀疏Q学习(Sparse Q-Learning, SQL)的新算法,这个算法在处...
学术论文:基于弱连续性的主观Q学习算法的收敛性分析 本文提到了对于弱Feller POMDPs(Partial Observable Markov Decision Processes,部分可观察马尔可夫决策过程)的量化逼近的研究。论文提出了一种基于Q-learning的控制策略,通过将POMDP问题转化为完全可观察的马尔可夫过程,并使用量化方法来近似概率分布。同时,论文还分析...
3.Q-Learning: 核心思想:通过贝尔曼公式,来迭代Q函数,尝试解决信用分配问题,可以计算出每一个不同的s,a下对最终收益的贡献值。 定义:Q(s,a)函数,表示智能体agent在s状态下采用a动作,并在之后采取的都是最优动作条件下拿到的未来奖励 贝尔曼公式: Q(s,a) = r + \gamma max_{a^{'}}Q(s^{'},a^{...
Learning from Delayed Reward 该论文的页面为: http://www.cs.rhul.ac.uk/~chrisw/thesis.html 下载地址为: http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf 论文页面对这篇文章的描述: The thesis introduces the notion of reinforcement learning as learning to contr...
Learning from Delayed Reward 该论文的页面为:http://www.cs.rhul.ac.uk/~chrisw/thesis.html 下载地址为:http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf 论文页面对这篇文章的描述: The thesis introduces the notion of reinforcement learning as learning to control a Markov Decision Process by in...
Continuous Deep Q-Learning with Model-based Acceleration 本文提出了连续动作空间的深度强化学习算法。 开始正文之前,首先要弄清楚两个概念:Model-free 和 Model-based。引用 周志华老师的《机器学习》中的一段话来解释这个概念,即: Model-based learning:机器已对环境进行了建模,能够在机器内部模拟出与环境相同或者...
我们的论文有三个主要贡献:第一,我们取得并评价了一个Q-learning表示,能够在连续领域中进行有效的Q-learning;第二,我们评估了几个能够把学习到的模型包含进模型无关的Q-learning的选项,并表明在我们的连续控制任务中,它们都缺乏效率。第三,我们提出,联合局部线性模型和局部在策略想象推广,加速对模型无关的连续Q-le...
研究六种Extension to DQN的integration,包括Double Q-learning、Prioritized replay、Dueling networks、Multi-step learning、Distributed RL和Noisy Nets。其中,Multi-step learning使用n-step return替代Q-learning中的one-step return;Distributed RL学习去近似收益的分布而不是预期收益;Noisy Nets使用噪声线性层来结合确定...
论文地址: https://papers.nips.cc/paper/3964-double-q-learning.pdf 本论文由DeepMind发表于2015年NIPS的一篇论文,作者Hasselt。 前言: Q-Learning算法由于受到大规模的动作值过估计(overestimation)而出现不稳定和效果不佳等现象的存在,而导致overestimation的主要原因来自于最大化值函数(max)逼近,该过程目标是为了...
读论文:《Correlated-Q Learning》 今天要读一篇 Amy Greenwald 的论文《Correlated-Q Learning》,先记一下论文中的基础概念,然后再去深入解读。 这篇论文的目标是:在 general-sum 马尔可夫博弈中学习均衡策略 纳什均衡: 不同的 action 服从独立概率分布