Q-Learning 是之前讨论过的查找表方法中最有趣的一种,它也是 Deep Q Learning 的基础。Q-learning 算法使用一个状态-动作值 Q 表(也称为 Q 值表)。该 Q 表中每个状态有一行,每个动作有一列。每个单元格都包含相应状态-动作对的估计 Q 值。 初始状态下,所有的 Q 值都设置为为零。随着 Agent 与环境互...
Q-Learning的原理和缺点:首先训练一个 Q-function,然后将 Q-function 编码成 Q-table,适用于离散的比较小的状态空间环境。如果环境的状态空间太大,Q-table会出现内存爆炸的问题。 为了解决 Q-Learning 的上述缺点,后来提出了 Deep Q-Learning 算法,其核心思想是使用神经网络代替 Q-function,给定一个状态,该神经网...
1. 原理讲解 Q-learning算法实际上相当简单,仅仅维护一个Q值表即可,表的维数为(所有状态S,所有动作A),表的内容称为Q值,体现该状态下采取当前动作的未来奖励期望。智能体每次选择动作时都会查询Q值表在当前状态下采取何种动作得到的未来奖励可能最多,当然也会添加一些随机性,使智能体可能选择别的可能当前认为未来奖励...
1. 原理讲解 Q-learning算法实际上相当简单,仅仅维护一个Q值表即可,表的维数为(所有状态S,所有动作A),表的内容称为Q值,体现该状态下采取当前动作的未来奖励期望。智能体每次选择动作时都会查询Q值表在当前状态下采取何种动作得到的未来奖励可能最多,当然也会添加一些随机性,使智能体可能选择别的可能当前认为未来奖励...
Q-learning是一种基于值函数的强化学习方法,用于学习在不同状态下采取不同行动的价值。它通过迭代地更新Q-value(行动-状态值函数),使得智能体可以根据当前状态选择最优的行动,并逐步优化策略以获得最大的累积奖励。 Q-learning的原理 Q-learning的核心思想是通过不断地更新Q-value来逼近最优价值函数。其更新公式如下...
【Q-Learning算法+神经网络】1小时搞懂深度强化学习DQN算法原理及训练!轻松进行DQN算法改进及应用技巧!共计16条视频,包括:1 算法原理通俗解读、2 目标函数与公式解析、3 Qlearning算法实例解读等,UP主更多精彩视频,请关注UP账号。
Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过...
Q-Learning 学习算法 在基于价值的强化学习中,最基本的算法是 Q-Learning 和 Sarsa,其中 Q-Learning 在实际中是应用更加广泛的算法。和案例中小狮子寻找大火腿的方法类似,Q-Learning 算法的原理简述如下: 初始化 Q-Table:根据环境及动作种类构建相同维度的表。
智能学习的奥秘:揭开Q-学习的神秘面纱,Q-学习(Q-Learning)是一种无模型的强化学习算法,用于学习在给定状态下采取哪种动作以最大化某种长期收益。其核心是Q-函数,用于评估在特定状态下采取特定动作的价值。Q-学习的基本原理和步骤包括:Q-函数:Q-函数Q(s,a)代表在状态