GPU/CPU运行切换 在训练网路时,采用GPU进行加速,pytorch提供了一个功能,能够一条语句切换在CPU、GPU上运算,如果在GPU上运行,device = torch.device( ‘cuda:0’ ), (后面的0是cuda的编号),如果在CPU上运行,将‘cuda’改成‘GPU’即可。对net搬到GPU上去,使用net = MLP().to(device), 将loss也使用.to(d...
[4., 5., 6.]], device='cuda:0') 1. 2. 3. 4. 在上述代码中,我们首先创建了一个形状为(2, 3)的张量x,然后使用x.to(device)将其转换为GPU可用的格式。其中,device是一个torch.device对象,可以使用torch.cuda.is_available()函数来判断是否支持GPU加速。 import torch from torch import nn from ...
简介: 【PyTorch】cuda()与to(device)的区别 问题 PyTorch中的Tensor要想在GPU中运行,可以有两种实现方式,其一是x.cuda(),其二是x.to(device)。两种方式均能实现GPU上运行,那么二者的区别是什么呢? 方法 import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' a = torch.randn([3, ...
device_ids =list(range(torch.cuda.device_count()))ifoutput_deviceisNone: output_device = device_ids[0] AI代码助手复制代码 补充:Pytorch使用To方法编写代码在不同设备(CUDA/CPU)上兼容(device-agnostic) 以前版本的PyTorch编写device-agnostic代码非常困难(即,在不修改代码的情况下在CUDA可以使用或者只能使用C...
Pytorch的to(device)用法 如下所示: 代码语言:javascript 复制 device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")model.to(device) 这两行代码放在读取数据之前。 代码语言:javascript 复制 mytensor=my_tensor.to(device) 这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device...
pytorch中.to(device)和.cuda()的区别说明 原理 .to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU model.to(device)#如果是多GPU if torch.cuda.device_count() > 1:model = nn.DataParallel(model,device_ids=[0,1,...
Pytorch的to(device)用法 如下所示: 代码语言:javascript 复制 device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")model.to(device) 这两行代码放在读取数据之前。 代码语言:javascript 复制 mytensor=my_tensor.to(device) 这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device...
其中,device=torch.device("cpu")代表的使用cpu,而device=torch.device("cuda")则代表的使用GPU。 当我们指定了设备之后,就需要将模型加载到相应设备中,此时需要使用model=model.to(device),将模型加载到相应的设备中。 将由GPU保存的模型加载到CPU上。 将torch.load()函数中的map_location参数设置为torch.device...
device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu") model.to(device) AI代码助手复制代码 这两行代码放在读取数据之前。 mytensor= my_tensor.to(device) AI代码助手复制代码 这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行...
其中,device=torch.device("cpu")代表的使用cpu,而device=torch.device("cuda")则代表的使用GPU。 当我们指定了设备之后,就需要将模型加载到相应设备中,此时需要使用model=model.to(device),将模型加载到相应的设备中。 将由GPU保存的模型加载到CPU上。