简介: 【PyTorch】cuda()与to(device)的区别 问题 PyTorch中的Tensor要想在GPU中运行,可以有两种实现方式,其一是x.cuda(),其二是x.to(device)。两种方式均能实现GPU上运行,那么二者的区别是什么呢? 方法 import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' a = torch.randn([3, ...
推荐使用to(device)的方式,主要原因在于这样的编程方式更加易于扩展,而cuda()必须要求机器有GPU,否则需要修改所有代码,to(device)的方式则不受此限制,device既可以是CPU也可以是GPU;
batch_x, batch_y = batch_x.to(device), batch_y.to(device) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. torch.device使用方法 torch.device代表将torch.Tensor分配到的设备的对象,有cpu和cuda两种,这里的cuda就是gpu,至于为什么不直接用gpu与cpu对应,是因为gpu的编程接口采用的是cud...
self.device_ids = []returnifdevice_idsisNone: device_ids =list(range(torch.cuda.device_count()))ifoutput_deviceisNone: output_device = device_ids[0] AI代码助手复制代码 补充:Pytorch使用To方法编写代码在不同设备(CUDA/CPU)上兼容(device-agnostic) 以前版本的PyTorch编写device-agnostic代码非常困难(...
Pytorch的to(device)用法 如下所示: 代码语言:javascript 复制 device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")model.to(device) 这两行代码放在读取数据之前。 代码语言:javascript 复制 mytensor=my_tensor.to(device) 这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device...
pytorch中.to(device)和.cuda()的区别说明 原理 .to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU model.to(device)#如果是多GPU if torch.cuda.device_count() > 1:model = nn.DataParallel(model,device_ids=[0,1,...
To save changes-On you keyboard,press the following:ctrl+o-->save enter orreturnkey-->accept changes ctrl+x-->close editor 1. 2. 3. 4. 5. 关闭并重新打开终端。现在nvcc--version命令应该在终端中打印出已安装的CUDA版本。 步骤2 安装Miniconda ...
gpu device: cuda:0 二.CPU和GPU设备上的Tensor 默认情况下创建Tensor是在CPU设备上的,但是可以通过copy_、to、cuda等方法将CPU设备中的Tensor转移到GPU设备上。当然也是可以直接在GPU设备上创建Tensor的。torch.tensor和torch.Tensor的区别是,torch.tensor可以通过device指定gpu设备,而torch.Tensor只能在cpu上...
print("gpu device: {}:{}".format(gpu.type, gpu.index)) gpu device: cuda:0 二.CPU和GPU设备上的Tensor 默认情况下创建Tensor是在CPU设备上的,但是可以通过copy_、to、cuda等方法将CPU设备中的Tensor转移到GPU设备上。当然也是可以直接在GPU设备上创建Tensor的。torch.tensor和torch.Tensor的区别是,torch....
1.安装cuda 参考:Ubuntu下安装CUDA pytorch可以不依赖GPU运行,但是如果需要使用NVIDIA的GPU,则需要安装cuda 查看是否安装cuda lintong@master:~$ nvcc -V 程序“nvcc”尚未安装。 您可以使用以下命令安装: sudo apt inst