1 .to(device) .to(device)是PyTorch中的一个方法,可以将张量、模型转换为指定设备(如CPU或GPU)可用的格式。示例代码如下: import torch # 创建一个张量 x = torch.Tensor([[1, 2, 3], [4, 5, 6]]) print(x) # 将张量转换为GPU可用的格式 device = torch.device("cuda:0" if torch.cuda.is_...
简介: 【PyTorch】cuda()与to(device)的区别 问题 PyTorch中的Tensor要想在GPU中运行,可以有两种实现方式,其一是x.cuda(),其二是x.to(device)。两种方式均能实现GPU上运行,那么二者的区别是什么呢? 方法 import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' a = torch.randn([3, ...
GPU/CPU运行切换 在训练网路时,采用GPU进行加速,pytorch提供了一个功能,能够一条语句切换在CPU、GPU上运算,如果在GPU上运行,device = torch.device( ‘cuda:0’ ), (后面的0是cuda的编号),如果在CPU上运行,将‘cuda’改成‘GPU’即可。对net搬到GPU上去,使用net = MLP().to(device), 将loss也使用.to(d...
pytorch中.to(device)和.cuda()的区别说明 原理 .to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU model.to(device)#如果是多GPU if torch.cuda.device_count() > 1:model = nn.DataParallel(model,device_ids=[0,1,...
device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")# 单GPU或者CPUmodel.to(device)#如果是多GPUif torch.cuda.device_count() > 1: model = nn.DataParallel(model,device_ids=[0,1,2]) model.to(device) AI代码助手复制代码 ...
没有区别。 早期(张量和模型都要): x = x.cuda() model.cuda() 后来: device = torch.device('cuda') if cuda_available else torch.device('cpu') x = x.to(device) model = model.to(devi...
Pytorch的to(device)用法 如下所示: 代码语言:javascript 复制 device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")model.to(device) 这两行代码放在读取数据之前。 代码语言:javascript 复制 mytensor=my_tensor.to(device) 这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device...
以前版本的PyTorch编写device-agnostic代码非常困难(即,在不修改代码的情况下在CUDA可以使用或者只能使用CPU的设备上运行)。 device-agnostic的概念 即设备无关,可以理解为无论什么设备都可以运行您编写的代码。(PS:个人理解,我没有在网上找到专业解释) PyTorch 0.4.0使代码兼容 ...
其中,device=torch.device("cpu")代表的使用cpu,而device=torch.device("cuda")则代表的使用GPU。 当我们指定了设备之后,就需要将模型加载到相应设备中,此时需要使用model=model.to(device),将模型加载到相应的设备中。 将由GPU保存的模型加载到CPU上。
RuntimeError: Expected object of device type cuda but got device type cpu for argument #2 'target' in call to _thnn_l1_loss_forward 这种报错通常有几种情况: 数据在cpu上,模型在gpu上; 数据在gpu上,模型在cpu上; 指定层不支持gpu或cpu版本,但数据和模型都在gpu或cpu上。