第3关:Tensor 切片及索引 本关希望同学们掌握张量的切片、索引操作,便于对数据进行处理和分析,提取出用户感兴趣的数据。 本关任务:本关声明了一个 tensor变量t,根据要求对其进行索引切片操作,实现正确输出。其中,涉及到正序索引、逆序索引,步长为3的索引操作。 import torch t = torch.Tensor(range(6)) #/***...
#8.2 numpy转tensor 使⽤ from_numpy() 将NumPy数组转换成 Tensor : import numpy as np a=np.ones(5) b=torch.from_numpy(a) print(a,b) # [1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1.], dtype=torch.float64) a+=1 print(a,b) #[2. 2. 2. 2. 2.] tensor([2., ...
其次,应用Tensor类初始化输入一个整数将返回一个以此为长度的全零一维张量,而tensor函数则返回一个只有该元素的零维张量: 当然,上述有一个细节需要优先提及:应用Tensor类接收一个序列创建Tensor时,返回的数据类型为float型,这是因为Tensor是FloatTensor的等价形式,即除此之外还有ByteTensor,IntTensor,LongTensor以及Double...
Quantized Tensor 可以存储 int8/uint8/int32 类型的数据,并携带有 scale、zero_point 这些参数。把一个标准的 float Tensor 转换为量化 Tensor 的步骤如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 >>>x=torch.rand(2,3,dtype=torch.float32)>>>xtensor([[0.6839,0.4741,0.7451],[0.9301,0.17...
Tensor属性 文中列举了Tensor的三个常用属性。 shape,指的是Tensor各个维度的长度,如图中,是两维,长度分别是3和4; dtype,指的是Tensor的数据类型,如图中,是float32; device,指的是Tensor目前存储的位置,如图中,是cpu,后面可以将其转移到gpu中,tensor.device也会相应变化。
其次,应用Tensor类初始化输入一个整数将返回一个以此为长度的全零一维张量,而tensor函数则返回一个只有该元素的零维张量: 图片 当然,上述有一个细节需要优先提及:应用Tensor类接收一个序列创建Tensor时,返回的数据类型为float型,这是因为Tensor是FloatTensor的等价形式,即除此之外还有ByteTensor,IntTensor,LongTensor以及...
在上面的代码中,我们首先创建了一个包含整数的torch.tensor。然后,我们使用.to()方法将其转换为torch.FloatTensor,并将目标数据类型设置为torch.float32。另一种方法是使用astype()方法进行转换,它也可以达到相同的效果。值得注意的是,在进行数据类型转换时,需要确保目标数据类型与原始数据兼容。在上述示例中,我们将整...
Tensor 概述 torch.Tensor 是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array。1,指定数据类型的 tensor 可以通过传递参数 torch.dtype 和/或者 torch.device 到构造函数生成: 注意为了改变已有的 t…
Pytorch中Tensor的类型转换 Pytorch中的Tensor常用的类型转换函数(inplace操作): (1)数据类型转换 在Tensor后加 .long(), .int(), .float(), .double()等即可,也可以用.to()函数进行转换,所有的Tensor类型可参考https://pytorch.org/docs/stable/tensors.html...
以下是使用torch.tensor()创建张量的基本示例: 复制 importnumpyasnpimporttorch arr=np.ones((3,3))'''[[1.1.1.][1.1.1.][1.1.1.]]'''print(arr)# ndarray的数据类型:float64print("ndarray的数据类型:",arr.dtype)t=torch.tensor(arr)'''tensor([[1.,1.,1.],[1.,1.,1.],[1.,1.,1....