1. Batch Size的调整 Batch Size是指一次前向计算以及反向传播时所使用的样本数目。较大的Batch Size会占用更多的显存空间,但训练速度会更快。因此,在训练过程中我们可以根据显存的大小合理调整Batch Size。如果显存较小,可以降低Batch Size,反之则可以增大Batch Size。 代码语言:javascript 代码运行次数:0 复制 Cloud...
功能:依size 创建全 0 张量 size : 张量的形状 , 如 (3,3),(3,224,224) out : 输出的张量 layout 内存中布局形式 , 有strided(默认), sparse_coo(这个通常稀疏矩阵时设置,提高读取效率) 等 device 所在设备 , gpu cpu requires_grad :是否需要梯度 code: 代码语言:javascript 复制 out_t=torch.tenso...
batch_size(可选,默认为1):每个批次包含的数据样本数。 shuffle(可选,默认为False):是否在每个epoch开始时打乱数据。 sampler(可选):定义从数据集中抽取样本的策略,如果指定,shuffle必须为False。 batch_sampler(可选):与sampler类似,但是一次返回一个batch的索引,不能与batch_size, shuffle, sampler, drop_last同...
3.for循环从loader里面读取数据 train_data = torchvision.datasets.CIFAR10(root="../data", train=True,transform=torchvision.transforms.ToTensor(),download=True)train_dataloader = DataLoader(train_data, batch_size=8, num_workers=1, pin_memory=True)for data in train_dataloader: 参考连接:https://bl...
对于单层的GRU模型,输入数据的形状应该是(batch_size, sequence_length, input_size)。对于多层的GRU模型,还需要加上一个额外的维度,以表示每一层的输出。 初始状态:在执行前向传播之前,需要为GRU模型的初始状态设置一个合适的值。通常可以使用零值或随机值作为初始状态。下面是一个例子,展示了如何将数据输入到前面...
DataLoader自动将数据集中的样本打包成小批量,这是通过设置batch_size参数来实现的。每次调用DataLoader的迭代器时,都会返回一个包含batch_size个样本的数据批次,这对于训练深度学习模型是非常关键的,因为大多数模型都需要按照批次进行前向传播和反向传播计算。
在阶段阶段,FlashAttention在batch size和查询长度维度上进行并行化。在推理阶段,查询长度通常为1,这意味着如果batch size小于GPU上的流式多处理器数量(例如,A100为108),该操作将仅使用GPU的一小部分。这对于长上下文情况尤甚,因为长上下文需要较小的batch size才能适应GPU内存。所以,结果就是,当batch size为...
bias, x.view(-1, x.size(-1)), self.weight) x = x.view(*size_out) return xCONV1D 层解释 CONV1D 层本身可以看作是一个线性层。本质上,它是投射一个初始张量 x(最终尺寸为 x.size(-1))并传递给它,最终尺寸为 self.nf。 下面是相同的输出示例:d_model = 768conv1d = Co...
这个激活函数的结果的大小也为 batch_size x hidden_size,其会被传递给第二层(也被称为输出层)。该层可将隐藏层的结果转换成一个大小为 batch_size x 10 的矩阵,这与 logistic 回归模型的输出一样。 引入隐藏层和激活函数让模型学习输入与目标之间更复杂的、多层的和非线性的关系。看起来像是这样(蓝框表示单...
分配/ 管理内存块的基本单位,(stream_id, size, ptr) 三元组可以特异性定位一个 Block,即 Block 维护一个 ptr 指向大小为 size 的内存块,隶属于 stream_id 的 CUDA Stream。 所有地址连续的 Block(不论是否为空闲,只要是由 Allocator::malloc 得来的)都被组织在一个双向链表里,便于在释放某一个 Block 时...