python baseline.py --save_path baseline_run_deeplabv3_resnet50_cutmix --crop_size 576 1152 --batch_size 8 --cutmix; Copy Blob 在 Blob 存储的基础上构建,并通过Copy的方式增强了性能。 另外,如果要解决前面所提到的类别不平衡问题,则可以使用视觉归纳优先的CopyBlob进行增强。 # CopyBlob Augmentatio...
non_blocking=True) # ❶ label_g = label_t.to(self.device, non_blocking=True) if self.segmentation_model.training and self.augmentation_dict: # ❷ input_g, label_g
class CamVidDataset(torch.utils.data.Dataset): """CamVid Dataset. Read images, apply augmentation and preprocessing transformations. Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder class_values (list): values of classes to extract from segmentatio...
class CamVidDataset(torch.utils.data.Dataset): """CamVid Dataset. Read images, apply augmentation and preprocessing transformations. Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder class_values (list): values of classes to extract from segmentatio...
如果使用了更大的模型或者更大的网络结构,性能可能会有所提高。 另外,如果使用了各种集成模型,性能也会有所提高。 资源地址: https://github.com/hoya012/semantic-segmentation-tutorial-pytorch —完— 本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止二次转载...
Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augmentation Training Inference Code structure Config file format Acknowledgement Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch ...
如果搞detection、segmentation之类cv工程的,现在基于pytorch框架很多,首推fair和cuhk的。如果搞底层运算...
| |---SegmentationClass | |---SegmentationObject ILSVRC2012 path : /data/ImageNet/ILSVRC2012 | |---train | |---val cifar path: /data/cifar | |---cifar-10-batches-py | |---cifar-10-python.tar.gz d) 使用了amp混精度使gpu加速,若不知如何使用可参考如下链接: 所以需要在...
└── SegmentationObject 存放按照 object 分割的图片 ├── Main │ ├── train.txt 写着用于训练的图片名称, 共 2501 个 │ ├── val.txt 写着用于验证的图片名称,共 2510 个 │ ├── trainval.txt train与val的合集。共 5011 个
augmentations are implemented here │ └── base_trainer.py │├── dataloader/ - loading the data for different segmentation datasets │├── models/ - contains semantic segmentation models │├── saved/ │ ├── runs/ - trained models are saved here │ └── log/ - default logdir...