2.训练Cifar-10数据集 回到顶部 1.Pytorch上搭建ResNet-18 1 import torch 2 from torch import nn 3 from torch.nn import functional as F 4 5 6 class ResBlk(nn.Module): 7 """ 8 resnet block子模块 9 """ 10 def __init__(self, ch_in, ch_out, stride=1): 11 12 super(ResBlk, ...
在测试集上,我们的模型准确率可以达到95.46%。在Kaggle的Cifar10比赛上,我训练的模型在300,000的超大Cifar10数据集上依然可以达到95.46%的准确率: 1Cifar10数据集 Cifar10数据集由10个类的60000个尺寸为32x32的RGB彩色图像组成,每个类有6000个图像, 有50000个训练图像和10000个测试图像。 在使用Pytorch时,我们可以...
模型存放在checkpoint目录下,模型的训练是上述的Resnet18, 注意如果是gpu训练,尤其关注一下if中代码的顺序。 将net装换为DataParallel,用以并行训练,因为原Resnet18在gpu上训练使用了DataParallel,所以这里也要进行封装,会包一层module FINETUNING:将最后一层的10类输出,改为2类输出。注意gpu中的写法,net.module.lin...
何凯明等人在2015年提出的ResNet,在ImageNet比赛classification任务上获得第一名,获评CVPR2016最佳论文。 自从深度神经网络在ImageNet大放异彩之后,后来问世的深度神经网络就朝着网络层数越来越深的方向发展,从LeNet、AlexNet、VGG-Net、GoogLeNet。直觉上我们不难得出结论:增加网络深度后,网络可以进行更加复杂的特征提取,...
1. Pytorch上搭建ResNet-18 1.1 ResNet block子模块 import torch from torch import nn from torch.nn import functional as F class ResBlk(nn.Module): """ ResNet block子模块 """ def __init__(self, ch_in, ch_out, stride = 1): ...
注意,如果直接使用torch.torchvision的models中的ResNet18或者ResNet34等等,你会遇到最后的特征图大小不够用的情况,因为cifar-10的图像大小只有32*32,因此需要单独设计ResNet的网络结构!但是采用其他的数据集,比如imagenet的数据集,其图的大小为224*224便不会遇到这种情况。
到这里,一个ResNet18模型就构建完成了。 不过,仅仅是搭建完成还是远远不够的,让我们拿它来练练手。笔者在jupyter notebook上使用CIFAR10数据集来测试我们的ResNet18模。 fromresnetimportResNet18 #Use the ResNet18 on Cifar-10importtorch.optimasoptimimporttorchvisionimporttorchvision.transformsastransforms ...
ResNet代码 本文主要搭建了ResNet18网络架构,每个block中包含两个Basicblock,每个Basicblock中包含两层,除去输入层和输出层外,一共有16层网络。而且每一个Basciblock之后进行一次跳跃连接。在此基础上,利用CIFAR10上的数据集大小举例,说明了ResNet网络中每层输出的大小变化。 代码语言:javascript 代码运行次数:0 运行...
一、使用PyTorch搭建ResNet18网络并使用CIFAR10数据集训练测试 1. ResNet18网络结构 所有不同层数的ResNet: 这里给出了我认为比较详细的ResNet18网络具体参数和执行流程图: 2. 实现代码 这里并未采用BasicBlock和BottleNeck复现ResNet18 具体ResNet原理细节这里不多做描述,直接上代码 model.py网络模型部分: import ...
接下来我们将自定义一个ResNet18网络结构,并使用CIFAR-10数据集进行简单测试。 CIFAR-10数据集由10个类别的60000张32x32彩色图像组成,每个类别有6000张图像,总共分为50000张训练图像和10000张测试图像。 resnet18.py(截取部分,参考配套例程) 1 2 3 4 5 6 7 8 9 # 导入下载的数据集,使用torchvision加载训练集...