repeat可以理解为多次复制张量后在指定维度上concate上去,即x.repeat(n,dim=k)等价成torch.cat([x for _ in range(n)],dim=k) repeat_interleave实际上等价于repeat在高一维的基础上运算后再view,即x.repeat_interleave(n,dim=k)等价成x.repeat(n,dim=k+1).view(N0, N1, ..., n*Nk, Nk+1, ...),其中N0,N1,Nk,Nk+1分别指x的第0,1,k,k+1维...
从这个代码可以看出来torch.repeat更像是把tensor作为一个整体进行复制, 而torch.repeat_interleave更是针对tensor里的每个元素进行复制,并且torch.repeat_interleave可以通过传入一个一维的torch.Tensor来指定每个元素复制的次数 importtorchx=torch.tensor([[1,2],[3,4]])result=torch.repeat_interleave(x,torch.tenso...
x.repeat(1,1,1,1).size() # torch.Size([1,1,2,4]) #3. repeat中传入的参数不可以少于x的维度 x.repeat(1) # 报错 torch.repeat_interleave torch.repeat_interleave的行为与numpy.repeat类似,但是和torch.repeat不同,这边还是以代码为例:
Pytorch中,与Numpy的repeat函数相类似的函数为torch.repeat_interleave: torch.repeat_interleave(input, repeats, dim=None) 1. 参数input为原始张量,repeats为指定轴上的复制次数,而dim为复制的操作轴,若取值为None则默认将所有元素进行复制,并会返回一个flatten之后一维张量。与repeat将整个原始张量作为整体不同,repea...
二、repeat_interleave 以tensor中的元素作为基础进行复制操作 1. 示例1:向量复制 x=torch.LongTensor(range(0,3))print(x)print(x.repeat_interleave(2))# print(x.repeat_interleave(2,3)) # 会报错 输出 tensor([0, 1, 2]) tensor([0, 0, 1, 1, 2, 2]) ...
以代码为例,展示repeat_interleave的使用方法。tile函数用于复制张量,功能类似于repeat,但在参数传递上略有不同。默认情况下,tile会沿行复制张量。若传入元组,表示在指定维度上的复制次数。例如,对于形状为(2, 2, 2)的张量,传入tile中的参数为(2, 2)时,会默认表示为(1, 2, 2),以行、列...
就是说它的功能和torch.Tensor.repeat()不太一样,更类似于numpy.repeat,我也不怎么用numpy,所以这里就不解释写numpy的了。 torch.repeat_interleave(input, repeats, dim=None, *, output_size=None) → Tensor1 参数列表如下: input,就是你要执行repeat操作的张量。
tile方法与repeat和repeat_interleave类似,主要用于复制张量。然而,tile在处理复制维度参数小于输入维度的情况时更为灵活。例如,在复制时,可以指定某些维度上的复制次数,而其他维度保持不变。输出 例如,原始张量为[[1, 2], [3, 4]],若要将列复制两次,而保持行不变,则使用tile方法可以实现这一...
Pytorchtensor的复制函数torch.repeat_interleave()1. repeat_interleave(self: Tensor, repeats: _int, dim: Optional[_int]=None)参数说明:self: 传⼊的数据为tensor repeats: 复制的份数 dim: 要复制的维度,可设定为0/1/2...2. 例⼦ 2.1 Code 此处定义了⼀个4维tensor,要对第2个维度复制,...
🐛 Describe the bug I encountered an error when exporting a model with a repeat_interleave op. Here is a minimal repro: import torch import torch.nn as nn class MyModel(nn.Module): def forward(self, x): return x.repeat_interleave(2) model...