The size of tensor a (3) must match the size of tensor b (5) at non-singleton dimension 1 在使用nn.utils.rnn.pad_sequence时,遇到如上错误,原因是使用方式错误. 使用说明 用padding_value填充可变长度张量列表 pad_sequence 沿新维度堆叠张量列表, 并将它们垫成相等的长度。 例如,如果输入是列表 大小...
从不同长度的单词索引的多个列表用零补充到最大长度并构成一个(Max_length, Batch_size)矩阵的过程可以被Pytorch的torch.nn.utils.rnn.pad_sequence来完成。 >>>fromtorch.nn.utils.rnnimportpad_sequence>>>seq_vectors=[torch.tensor([11,12,13]),torch.tensor([21,22]),torch.tensor([31,32])]>>>pad...
pad_sequence函数: 这个函数可以将一组长度不等的张量进行填充,使它们具有相同的长度。这对于处理变长的序列数据非常有用。你可以指定填充值,以及是否将批次大小放在第一维度。 pack_padded_sequence函数: 这个函数可以将填充后的序列数据进行打包。这样,你可以将这些数据直接输入到RNN模型中,进行训练或预测。
其实有时候,可以填充后直接做,影响有时也不是很大,使用pack_padded_sequence后效果可能会更好。 结合例子分析: 如果不用pack和pad操作会有一个问题,什么问题呢?比如上图,句子“Yes”只有一个单词,但是padding了多余的pad符号,这样会导致LSTM对它的表示通过了非常多无用的字符,这样得到的句子表示就会有误差,更直观...
1. pad_sequece操作 先来看一下官方的定义: 其中sequence是我们要进行pad操作的序列,该参数是一个list列表,列表的元素是一个一个tensor。 batch_first=True说明第一个维度是batch_size,默认为False; padding_value的值是用来填充的值; 下面是一个具体使用示例: ...
1. **数据填充**:首先,你需要使用 `pad_sequence` 函数对不同长度的序列进行填充,使得它们具有相同的长度。这样可以将它们组合成一个批次进行处理。 2. **记录序列长度**:在填充序列之前,记录下每个序列的实际长度,因为这些信息对于 `pack_padded_sequence` 来说是必要的。
pad_sequences_3d用于将一批序列填充到统一的长度,确保批中的每个序列具有相同数量的元素(或时间步长)。这在许多机器学习任务中尤其重要,因为输入数据必须具有一致的形状。 # Define a function for paddingdef pad_sequences_3d(sequences, max_len=None, pad...
在使用 pytorch 的 RNN 模块的时候, 有时会不可避免的使用到pack_padded_sequence和pad_packed_sequence,当使用双向RNN的时候, 必须要使用 pack_padded_sequence !!.否则的话, pytorch 是无法获得 序列的长度, 这样也无法正确的计算双向RNN/GRU/LSTM的结果. ...
这就引出pytorch中RNN需要处理变长输入的需求了。在上面这个例子,我们想要得到的表示仅仅是LSTM过完单词"Yes"之后的表示,而不是通过了多个无用的“Pad”得到的表示:如下图: 二、pytorch中RNN如何处理变长padding 主要是用函数torch.nn.utils.rnn.pack_padded_se...
填充:transforms.Pad 功能:对图像进行填充 参数: padding-(sequence or int, optional),此参数是设置填充多少个 pixel。 当为 int 时,图像上下左右均填充 int 个,例如 padding=4,则上下左右均填充 4 个 pixel,若为 32x32,则会变成 40x40。 fill- (int or tuple) 填充的值是什么 padding_mode- 填充模式,...