从不同长度的单词索引的多个列表用零补充到最大长度并构成一个(Max_length, Batch_size)矩阵的过程可以被Pytorch的torch.nn.utils.rnn.pad_sequence来完成。 >>>fromtorch.nn.utils.rnnimportpad_sequence>>>seq_vectors=[torch.tensor([11,12,13]),torch.tensor([21,22]),torch.tensor([31,32])]>>>pad...
(sequence_length, batch_size, embedding_size),就是变成一列是一个句子,据说这样可以提高并行处理效率,但是对于我这种新手来说形状有点抽象,所以老老实实用False了。 之后进行pack操作,pack之后变成PackedSequence类型,就能实现上文说的padding位对模型无效的效果了 batch = torch.nn.utils.rnn.pack_padded_sequenc...
其实有时候,可以填充后直接做,影响有时也不是很大,使用pack_padded_sequence后效果可能会更好。 结合例子分析: 如果不用pack和pad操作会有一个问题,什么问题呢?比如上图,句子“Yes”只有一个单词,但是padding了多余的pad符号,这样会导致LSTM对它的表示通过了非常多无用的字符,这样得到的句子表示就会有误差,更直观...
The size of tensor a (3) must match the size of tensor b (5) at non-singleton dimension 1 在使用nn.utils.rnn.pad_sequence时,遇到如上错误,原因是使用方式错误. 使用说明 用padding_value填充可变长度张量列表 pad_sequence 沿新维度堆叠张量列表, 并将它们垫成相等的长度。 例如,如果输入是列表 大小...
Pytorch学习笔记05--- pack_padded_sequence和pad_packed_sequence理解 首先,packed是包装好的的意思;padded是填充的意思;pack有包装、压紧的意思;pad有填充的意思。 pack_padded_sequence即压紧封装填充好的句子 pad_packed_sequence即填充被压紧封装好的句子 示意...
1. **数据填充**:首先,你需要使用 `pad_sequence` 函数对不同长度的序列进行填充,使得它们具有相同的长度。这样可以将它们组合成一个批次进行处理。 2. **记录序列长度**:在填充序列之前,记录下每个序列的实际长度,因为这些信息对于 `pack_padded_sequence` 来说是必要的。
这就引出pytorch中RNN需要处理变长输入的需求了。在上面这个例子,我们想要得到的表示仅仅是LSTM过完单词"Yes"之后的表示,而不是通过了多个无用的“Pad”得到的表示:如下图: 二、pytorch中RNN如何处理变长padding 主要是用函数torch.nn.utils.rnn.pack_padded_se...
在使用 pytorch 的 RNN 模块的时候, 有时会不可避免的使用到pack_padded_sequence和pad_packed_sequence,当使用双向RNN的时候, 必须要使用 pack_padded_sequence !!.否则的话, pytorch 是无法获得 序列的长度, 这样也无法正确的计算双向RNN/GRU/LSTM的结果. ...
但是pack_sequence这玩意返回的PackedSequence是batch_first=False的,这就让我很不爽,这意味着我的RNN必须是batch_first=False,所以不得不重新定义网络 rnn = nn.RNN(1, 3, batch_first=False) print(rnn(packed_sequence)) # 搞定! 最后,我...
tensors (sequence): 要连接的张量序列。 dim (int): 指定沿哪个轴进行连接的维度。 示例 代码语言:javascript 代码运行次数:0 运行 AI代码解释 import torch # 创建两个张量 x = torch.tensor([[1, 2, 3], [4, 5, 6]]) y = torch.tensor([[7, 8, 9], [10, 11, 12]]) # 使用 cat() ...