更重要的是,这种压制成(packed)的输入数据,pytorch中的RNN,LSTM模型都是认的,只需要把它们直接作为Module的input输入进去,可以得到对应的PackedSequence。 最后,我们可以使用pad_packed_sequence来反向把PackSequence变回padded后的矩阵和序列长度。 >>>fromtorch.nn.utils.rnnimportpad_packed_sequence>>>packed_seq=pa...
pack= nn.utils.rnn.pack_padded_sequence(pad,length,batch_first=True)print('pack:',pack) 程序运行结果如下: pack:PackedSequence(data=tensor([2., 6., 5., 3., 5., 6., 4., 4., 8., 5.]), batch_sizes=tensor([3, 3, 3, 1]), sorted_indices=None, unsorted_indices=None) 3. p...
batch_first参数默认为False,为True的时候输入的形状为 (sequence_length, batch_size, embedding_size),就是变成一列是一个句子,据说这样可以提高并行处理效率,但是对于我这种新手来说形状有点抽象,所以老老实实用False了。 之后进行pack操作,pack之后变成PackedSequence类型,就能实现上文说的padding位对模型无效的效果...
该方法会返回一个PackedSequence对象,其中包含data保存拉平的数据 和batch_sizes保存时间步相应的批次大小,比如上面就是tensor([4, 3, 3, 2, 1, 1])。 Pytorch的RNN(LSTM/GRU)可以接收PackedSequence,并返回一个新的PackedSequence。然后我们可以用pad_packed_sequence方法把返回的PackedSequence还原成我们想要的形式。
在PyTorch中,除了`pad_sequence`之外,还有其他几个函数可以用来处理序列数据,特别是在准备数据以供循环神经网络(RNN)使用时。以下是一些常用的函数: 1. **`pack_padded_sequence`**:这个函数将填充后的序列打包成一个`PackedSequence`对象,使得RNN可以高效地处理不同长度的序列。它需要序列的长度列表作为输入,并可以...
pack_padded_sequence根据时间步拉平了上面排序后的句子,在每个时间步维护一个数值,代表当前时间步内有多少个批次数据。比如上图右边黄色区域的时间步内,只有3个输入是有效的,其他都是填充。因此说该时间步内的批次数为3。 Python中batch_first不同的取值,压缩的方式有点不同,不过主...
Pytorch学习笔记05--- pack_padded_sequence和pad_packed_sequence理解 首先,packed是包装好的的意思;padded是填充的意思;pack有包装、压紧的意思;pad有填充的意思。 pack_padded_sequence即压紧封装填充好的句子 pad_packed_sequence即填充被压紧封装好的句子 示意...
假设输入是d,batch size=2,第一个batch是[a, b],即两个标量,第二个batch是一个标量, d = [[a, b], [c]]\\ t表示pad之后,x是一个标量的变量, t = [[a, b], [c, 0]]\\ 计算图是这样的,其中f是sigmoid,先sig…
一个PackedSequence对象。 torch.nn.utils.rnn.pad_packed_sequence() 填充packed_sequence。 上面提到的函数的功能是将一个填充后的变长序列压紧。 这个操作和pack_padded_sequence()是相反的。把压紧的序列再填充回来。填充时会初始化为0。 返回的Varaible的值的size是T×B×*,T是最长序列的长度,B是 batch_...
Pytorch中pack_padded_sequence和pad_packed_sequence的理解 引言 这里补充下对Pytorch中pack_padded_sequence和pad_packed_sequence的理解。 当我们训练RNN时,如果想要进行批次化训练,就得需要截断和填充。 因为句子的长短不一,一般选择一个合适的长度来进行截断; ...