如果nn.Module()中的直接子级也是一个nn.Module,你需要连着子级一起遍历(going deeper), 则可以调用named_modules()方法,这个方法会循环遍历nn.Module以及其child nn.Modules ,其实与named_children()的主要区别就是遍历的程度是否更deeper:
公式可以是用户输入的,因此 pyparsing 允许同时有效地处理公式语法和清理用户输入。有很多 pyparsing 的优...
named_parameters: 返回一个iterator,每次它会提供包含参数名的元组。 In [27]: x = torch.nn.Linear(2,3) In [28]: x_name_params = x.named_parameters() In [29]: next(x_name_params) Out[29]: ('weight', Parameter containing: tensor([[-0.5262, 0.3480], [-0.6416, -0.1956], [ 0.5042...
Pytorch中继承了torch.nn.Module的模型类具有named_parameters()/parameters()方法,这两个方法都会返回一个用于迭代模型参数的迭代器(named_parameters还包括参数名字): importtorch net = torch.nn.LSTM(input_size=512, hidden_size=64)print(net.parameters())print(net.named_parameters())# <generator object M...
Pytorch: parameters(),children(),modules(),named_*区别 nn.Module vs nn.functional 前者会保存权重等信息,后者只是做运算 parameters() 返回可训练参数 nn.ModuleList vs. nn.ParameterList vs. nn.Sequential layer_list = [nn.Conv2d(5,5,3), nn.BatchNorm2d(5), nn.Linear(5,2)]...
pytorch中Module模块中named_parameters函数 AI检测 class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.hidden = nn.Sequential( nn.Linear(256,64), nn.ReLU(inplace=True), nn.Linear(64,10) ) def forward(self, x):...
3.2.1 使用named_parameters()获取模型中的参数和参数名字---LogicNet_fun.py(第6部分)### 使用named_parameters()获取模型中的参数和参数名字 for name, param in model.named_parameters(): print(type(param.data),param.size(),name) # 输出 <class 'torch.Tensor'> torch.Size([3, 2]) Linear1.we...
if DEBUGGING_IS_ON:for name, parameter in model.named_parameters():if parameter.grad is not None:print(f"{name} gradient: {parameter.grad.data.norm(2)}")else:print(f"{name} has no gradient") if USE_MAMBA and DIFFERENT_H_STATES_RECU...
import torch.nn as nn model = nn.Linear(5, 5) input = torch.randn(16, 5) params = {name: p for name, p in model.named_parameters()} tangents = {name: torch.rand_like(p) for name, p in params.items()} with fwAD.dual_level(): for name, p in params.items(): delattr(mo...
(epoch+1)%200==0:# 可视化forname,layerinnet_normal.named_parameters():writer.add_histogram(name+'_grad_normal',layer.grad,epoch)writer.add_histogram(name+'_data_normal',layer,epoch)forname,layerinnet_weight_decay.named_parameters():writer.add_histogram(name+'_grad_weight_decay',layer.grad,...