可以通过调用named_parameters()方法得到我们定义的nn.Module,即MyLinear中所有的可学习的参数: my_linear = MyLinear(3, 4) for param in my_linear.named_parameters(): print(param) 可以得到以下输出: ('weight', Parameter containing: tensor([[ 0.9009, 0.6984, 3.0670, 0.9113], [-0.2515, -0.1617,...
而modules()返回的信息更加详细,不仅会返回children一样的信息,同时还会递归地返回,例如modules()会迭代地返回Sequential中包含的若干个子元素。 named_* named_parameters: 返回一个iterator,每次它会提供包含参数名的元组。 In [27]: x = torch.nn.Linear(2,3) In [28]: x_name_params = x.named_parameter...
你可以使用内置的 compile 和 eval 来快速完成这项工作,如下面的交互式会话所示:>>> y = compile(...
nn.Module vs nn.functional 前者会保存权重等信息,后者只是做运算 parameters() 返回可训练参数 nn.ModuleList vs. nn.ParameterList vs. nn.Sequential 的作用就是wrap pthon list,这样其中的参数会被
pytorch中Module模块中named_parameters函数,函数model.named_parameters(),返回各层中参数名称和数据。classMLP(nn.Module):def__init__(self):super(MLP,self).__init__()self.hidden=nn.Sequential(nn.Linear(256,64),nn.
1、model.named_parameters(),迭代打印model.named_parameters()将会打印每一次迭代元素的名字和param forname, paraminnet.named_parameters():print(name,param.requires_grad) param.requires_grad=False#conv_1_3x3.weight False bn_1.weight False bn_1.bias False ...
named_parameters 不会将所有的参数全部列出来,名字就是成员的名字。也就是说通过 named_parameters 能够获取到所有的参数。因为一般来说,类中的成...
named_modules 内部采用yield关键字,得到生成器。可以看到函数内部给出的例子,当外部迭代调用net.named_modules()时,会先返回prefix='',以及net对象本身。然后下一步会递归的调用named_modules(),继而深度优先的返回每一个module。 defnamed_modules(self,memo:Optional[Set['Module']]=None,prefix:str=''):r""...
3.2.1 使用named_parameters()获取模型中的参数和参数名字---LogicNet_fun.py(第6部分)### 使用named_parameters()获取模型中的参数和参数名字 for name, param in model.named_parameters(): print(type(param.data),param.size(),name) # 输出 <class 'torch.Tensor'> torch.Size([3, 2]) Linear1.we...
named_parameters(): print(name, param.shape) 在上述代码中,resnet.named_parameters()函数返回一个迭代器,它可以产生模型中所有参数的名称和值。我们可以通过遍历这些名称和值来访问每个参数的名称和形状。 接下来,我们讨论如何初始化模型参数。初始化模型参数是非常重要的步骤,因为它将直接影响到模型的训练效果。