I have had the chance to do some comparative benchmarking on PyTorch (MPS) and MLX for training and inference on two different types of models on two different tasks. Identical data pipeline (based onmlx-data) was used for this analysis. Throughput is presented assamples/sec. Mean and std ...
make mlx make mps - for PyTorch on Metal GPU make cpu - for PyTorch on CPU In order to track CPU/GPU usage, keep make track running while performing operation of interest. Results on M1 Max (MacOS Sonoma 14.1.1) Structure utils.py contains memory measurement utils try_phi2_torch.ipynb,...
PyTorch GPU 训练加速是使用苹果 Metal Performance Shaders (MPS) 作为后端来实现的。MPS 后端扩展了 PyTorch 框架,提供了在 Mac 上设置和运行操作的脚本和功能。MPS 使用针对每个 Metal GPU 系列的独特特性进行微调的内核能力来优化计算性能。新设备将机器学习计算图和原语映射到 MPS Graph 框架和 MPS 提供的调整...
明飞代表同事王传奇和姜彦斌介绍基于 Torchbench(https://github.com/pytorch/benchmark)的CPU基准测试标准化工作。 Meta工程师赵旭提供了关键协助。 2. Torchbench简介 TorchBench是一个开源的PyTorch性能评估工具包,旨在创建并维护一个用于CPU的标准化基准测试套件。
There are large gaps between CPU and GPU on both MLX and PyTorch at small batch sizes. I've cropped the y-axis, as it would be impossible to view the trends otherwise. (PyTorch MPS takes 11840 ms at a batch size of 16!) PyTorch claims a small performance penalty over MLX on the CP...
之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的。 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码,之前讲解的地址: 非稀疏矩阵版:https://cloud.tencent.com/developer/article/1694603
sIzeOyB36D56lWMpsbVwSPFUpkUkmPDOHfqB7wafAjzH/gF9q1bhtoDH+HHjzdi8Yxf4pk//A98sXUjxu/eBtJpxSQByaE+HD+0G4/+4V/wzOzfIn71HJIjQ6rg5ZoRtPvPKHrJdIeil0xLtBUwRS9tqpip6NWIWK1XNyVkkMrkLS0IBcJXyIYzGwSvsqJvGqI0rnh60wOQx+/gTvQsNjzzMN5a+IgiegVV9AqDkIVBjNy7jlPff4mnHnoAy56ajevNjTj2xcdY9Oif...
之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的。 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码,之前讲解的地址: 非稀疏矩阵版:https://cloud.tencent.com/developer/article/1694603