使用torch.Tensor.view()或torch.Tensor.reshape()方法重新调整Tensor的形状,以适应不同的内存格式需求。 在GPU上使用torch.cuda.set_memory_format()方法设置合适的内存格式,以最大程度地利用GPU的计算和内存性能。 使用torch.Tensor.pinned()方法将Tensor固定在CPU的 pinned memory中,以减少CPU和GPU之间的数据传输开...
Memory Format:Logical Order 和 Physical Order Channels First 和 Channels Last 通过strides访问数据 Conv2d中存Memory Format的传递 范例:MaxPool2d 特例I:Upsampling Kernel (CF) 的优化 特例II: VGGM 中 AvgPool3d 的优化 本篇是关于PyTorch CPU性能优化相关的简单入门教程的第一篇。 另外三篇: 马鸣飞:PyTorc...
CLASStorch.memory_format torch.memory_format 是一个对象,表示在其上分配或将分配 torch.Tensor 的内存格式。 可能的值为: .torch.contiguous_format:张量正在或将在密集的非重叠内存中分配。 步幅由按递减顺序的值表示。 .torch.channels_last:张量正在或将在密集的非重叠内存中分配。步幅由 strides[0] > strid...
print("训练前:{}".format(torch.cuda.memory_allocated(0))) train_epoch(model,data) print("训练后:{}".format(torch.cuda.memory_allocated(0))) eval(model,data) print("评估后:{}".format(torch.cuda.memory_allocated(0))) 最终方案: 最终发现的问题是:我在模型中增加了 register_buffer: self...
原始4D NCHW张量在内存中按每个通道(红/绿/蓝)顺序存储。转换之后,x = x.to(memory_format=torch.channels_last),数据在内存中被重组为NHWC (channels_last格式)。你可以看到RGB层的每个像素更近了。据报道,这种NHWC格式与FP16的AMP一起使用可以获得8%到35%的加速。
torch.zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) 根据input 的形状创建全0张量。 python input= torch.empty(2,3)t_z_l = torch.zeros_like(input) 全1张量(torch.ones()、torch.ones_like())和自定义数值张量(torch.full...
原始4D NCHW张量在内存中按每个通道(红/绿/蓝)顺序存储。转换之后,x = x.to(memory_format=torch.channels_last),数据在内存中被重组为NHWC (channels_last格式)。你可以看到RGB层的每个像素更近了。据报道,这种NHWC格式与FP16的AMP一起使用可以获得8%到35%的...
memory_format:类型为torch.memory_format,表示此模块中 4D 参数和缓冲区所需的内存格式。 下面的代码展示了将 CPU 上的模型移动到 GPU 上,其他类型可以自己随便写一下代码。 class Model(nn.Module): def __init__(self): super(Model, self).__init__() ...
.clone(memory_format=torch.contiguous_format) )# Use try/except 避免意外来回滚# 计算compute_mask 并register_forward_pre_hooktry:# 依据importance_scores来compute_maskmask = method.compute_mask(importance_scores, default_mask=default_mask)# 保存 mask to `module[name + '_mask']` 缓存module.regis...
val_loader = torch.utils.data.DataLoader(val_data_set,batch_size=batch_size,sampler=val_sampler,pin_memory=True,num_workers=nw,collate_fn=val_data_set.collate_fn) 如果有预训练权重的话,需要保证每块GPU加载的权重是一模一样的。需要在主进程保存模型初...