LogSigmoid() lgoutput = lg(a) print(lgoutput) tensor([[-0.4635, -0.5162, -0.7176], [-1.8053, -0.9601, -0.4502]]) nn.LogSoftmax() 操作:对Softmax()的结果取自然对数,由于softmax输出都是0-1之间的,因此logsofmax输出的是小于0的数。 本质:将Softmax()结果进一步拉大,且转化为[-∞,0]。
它和nn.Softmax的区别在于:对于大范围的logits输入,Softmax 的指数运算可能导致溢出问题,而LogSoftmax函数通过使用对数运算,减少了这种数值不稳定性。 公式如下: 总之,LogSoftmax主要用于多分类问题中,将模型输出(logits)转化为数值稳定的对数概率表示形式,并且与交叉熵损失函数一起使用时可以提高计算效率。 在使用负对...
1.函数语法格式和作用 F.softmax作用: 按照行或者列来做归一化的 F.softmax函数语言格式: # 0是对列做归一化,1是对行做归一化F.softmax(x,dim=1) 或者 F.softmax(x,dim=0) F.log_softmax作用: 在softmax的结果上再做多一次log运算 F.log_softmax函数语言格式: F.log_softmax(x,dim=1) 或者 ...
我们可以发现结果都恢复正常了,log_softmax 的实现可以过了。 logsumexp 最后我们来看第 4 个案例:logsumexp。虽然我知道 PyTorch 中有内置函数 logsumexp 可以实现这样的操作以及 logsumexp 的公式如图所示。 虽然我们在上文中已经用到了这个操作,但是有 2 点不同:第一,我是直接用的内置函数;第二,我不是对...
pytorch中多分类问题中最常用的损失函数应该就是CrossEntropyLoss了,传闻该函数结合了LogSoftmax和NLLLoss两个函数,那么这个函数到底是什么来头呢?本文来一探究竟。 交叉熵的定义 交叉熵刻画的是实际输出的分布与期望分布的距离:如果模型输出的结果的分布和期望的分布越相似,那么交叉熵就越小。交叉熵的定义公式为 ...
在Pytorch中,Softmax和LogSoftmax是两种常用的概率归一化函数。Softmax函数通过指定参数dim(0或1)对输入向量进行操作,当dim=0时,每一列元素会被归一化;dim=1时,每一行元素被归一化,保证所有元素和为1。LogSoftmax是对Softmax结果取自然对数,使得输出更容易进行数值计算。下面是一个代码示例,...
c=t.log(a/b) print(c) print(F.log_softmax(logit)) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 执行结果: 二者是相同的。所以以后想用的话,可以直接使用log_softmax()函数即可,就不用再分开搞了。
Logsigmoid 函数是对 sigmoid 函数取对数,其本质实现线性映射,尤其擅长处理负值,能增强对负输入的区分度。然而,sigmoid 函数在输出接近0或1时,导数接近于0,可能导致梯度消失问题,故在实际应用中需谨慎。最后,nn.LogSoftmax 函数对 softmax 结果取自然对数,进一步扩大数值差距,同时转换到 [-∞,0...
这里面有Sigmoid, Tanh, ReLU, Softmax, LogSoftmax, NLLLosss, CrossEntropyLoss 交叉熵。 由于水平有限,欢迎大家指出不足之处,共同进步。 importmathimportnumpyasnpimporttorchfromtorchimportnndefsigmoid(x):return1.0/(1.0+np.exp(-x))deftanh(x):a=np.exp(x)b=np.exp(-x)return(a-b)/(a+b)def...
softmax(X)ij=exp(Xij)∑kexp(Xik)softmax(X)ij=exp(Xij)∑kexp(Xik) 实现softmax 由以下 3 个步骤组成: 对每个项求幂; 对每一行求和,得到每个样本的规范化常数; 将每一行除以其规范化常数,确保结果的和为 1。 # 需要注意的是,此处的实现是比较草率的,例如没有考虑到小浮点数的上溢或下溢。