1.函数语法格式和作用 F.softmax作用: 按照行或者列来做归一化的 F.softmax函数语言格式: # 0是对列做归一化,1是对行做归一化F.softmax(x,dim=1) 或者 F.softmax(x,dim=0) F.log_softmax作用: 在softmax的结果上再做多一次log运算 F.log_softmax函数语言格式: F.log_softmax(x,dim=
return F.softmax(input, self.dim, _stacklevel=5) def extra_repr(self): return 'dim={dim}'.format(dim=self.dim) 2.LogSoftmax其实就是对softmax的结果进行log,即Log(Softmax(x)) class LogSoftmax(Module): r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensiona...
2.LogSoftmax其实就是对softmax的结果进行log,即Log(Softmax(x)) class LogSoftmax(Module): r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: \text{LogSoftmax}(x_{i}) = \log\left...
LogSigmoid() lgoutput = lg(a) print(lgoutput) tensor([[-0.4635, -0.5162, -0.7176], [-1.8053, -0.9601, -0.4502]]) nn.LogSoftmax() 操作:对Softmax()的结果取自然对数,由于softmax输出都是0-1之间的,因此logsofmax输出的是小于0的数。 本质:将Softmax()结果进一步拉大,且转化为[-∞,0]。
损失函数(loss function):衡量模型输出与真实标签的差异。 损失函数也叫代价函数(cost function)/ 准测(criterion)/ 目标函数(objective function)/ 误差函数(error function)。 二、Pytorch内置损失函数 1. nn.CrossEntropyLoss 功能:交叉熵损失函数,用于多分类问题。这个损失函数结合了nn.LogSoftmax和nn.NLLLoss的...
Logsigmoid 函数是对 sigmoid 函数取对数,其本质实现线性映射,尤其擅长处理负值,能增强对负输入的区分度。然而,sigmoid 函数在输出接近0或1时,导数接近于0,可能导致梯度消失问题,故在实际应用中需谨慎。最后,nn.LogSoftmax 函数对 softmax 结果取自然对数,进一步扩大数值差距,同时转换到 [-∞,0...
计算softmax,后跟对数。 虽然在数学上等价于 log(softmax(x)),但单独执行这两个操作更慢且数值不稳定。该函数计算为: 例子: >>>t = torch.ones(2,2)>>>torch.special.log_softmax(t,0) tensor([[-0.6931,-0.6931], [-0.6931,-0.6931]]) ...
NLLLoss 的 输入 是一个对数概率向量和一个目标标签. 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 损失函数 nn.CrossEntropyLoss() 与 NLLLoss() 相同, 唯一的不同是它为我们去做 softmax. 4、log似然代价函数 C=−∑kyklogak ...
一、Pytorch Softmax简介 Softmax是一种将一组输入映射到一组输出概率的函数。对于多分类问题,Softmax函数可以将输入样本映射到各个类别上的概率分布,以便于后续的决策或分类操作。Pytorch Softmax的实现位于torch.nn模块中,可以使用torch.nn.Softmax或torch.softmax函数进行计算。 二、Pytorch Softmax应用场景 分类问题...
在Pytorch中,Softmax和LogSoftmax是两种常用的概率归一化函数。Softmax函数通过指定参数dim(0或1)对输入向量进行操作,当dim=0时,每一列元素会被归一化;dim=1时,每一行元素被归一化,保证所有元素和为1。LogSoftmax是对Softmax结果取自然对数,使得输出更容易进行数值计算。下面是一个代码示例,...