* Callback几乎可以使用上面`LightningModule`中所有和流程位置有关的hooks。而每个函数都至少接受两个输入:`Trainer`和`LightningModule`。 ```python from pytorch_lightning import Trainer, LightningModule def on_MODE_STATE(self, trainer: Trainer, pl_module: LightningModule): pass ``` 此外,对于上文中提...
https://pytorch-lightning.readthedocs.io/en/0.10.0/introduction_guide.html#why-pytorch-lightning 简而言之,使用PyTorch Lightning我发现编写、阅读和调试都很容易。这些活动占据了我作为机器学习工程师大部分时间。此外,文档写得很好,包含许多教程,因此学习起来也很容易。 CNN模型回顾 LeNet是学习或复习计算机视觉深...
上面已经提到,研究代码 在Lightning 中,是抽象为 LightningModule 类;而这个类与我们平时使用的 torch.nn.Module 是一样的(在原有代码中直接替换 Module 而不改其他代码也是可以的),但不同的是,Lightning 围绕 torch.nn.Module 做了很多功能性的补充,把上面4个关键部分都囊括了进来。 这么做的意义在于:我们的 ...
上面已经提到,研究代码 在 Lightning 中,是抽象为 LightningModule 类;而这个类与我们平时使用的 torch.nn.Module 是一样的(在原有代码中直接替换 Module 而不改其他代码也是可以的),但不同的是,Lightning 围绕 torch.nn.Module 做了很多功能性的补充,把上面4个关键部分都囊括了进来。 这么做的意义在于:我们的...
以MNIST为例,将PyTorch版本代码转为PyTorch Lightning。 5.1 PyTorch版本训练MNIST 对于一个PyTorch的代码来说,一般是这样构建网络(源码来自PyTorch中的example库)。 classNet(nn.Module):def__init__(self):super(Net, self).__init__() self.conv1 = nn.Conv2d(1,32,3,1) ...
classMyModel(pytorch_lightning.LightningModule):def__init__(self):super().__init__()# 初始化模型defforward(self,x):# 模型的前向传播deftraining_step(self,batch,batch_idx):# 训练步骤defconfigure_optimizers(self):# 优化器的配置defto(self,device):# 更新模型的设备配置self.device=devicereturnsu...
pytorch-lightning 是建立在pytorch之上的高层次模型接口。 pytorch-lightning 之于 pytorch,就如同keras之于 tensorflow. pytorch-lightning 有以下一些引人注目的功能: 可以不必编写自定义循环,只要指定loss计算方法即可。 可以通过callbacks非常方便地添加CheckPoint参数保存、early_stopping 等功能。 可以非常方便地在单CPU...
最后,第三部分提供了一个我总结出来的易用于大型项目、容易迁移、易于复用的模板,有兴趣的可以去GitHub—https://github.com/miracleyoo/pytorch-lightning-template试用。 核心 Pytorch-Lighting 的一大特点是把模型和系统分开来看。模型是像Resnet18, RNN之类的纯模型, 而系统定...
简化了部分代码,之前如果要转到GPU上,需要用to(device)方法判断,然后转过去。有了PyTorch lightning的帮助,可以自动帮你处理,通过设置trainer中的gpus参数即可。 提供了一些有用的工具,比如混合精度训练、分布式训练、Horovod 代码移植更加容易 API比较完善,大部分都有例子,少部分讲的不够详细。 社区还是比较活跃的,如果...
Pytorch-Lightning 是一个很好的库,或者说是pytorch的抽象和包装。它的好处是可复用性强,易维护,逻辑清晰等。缺点也很明显,这个包需要学习和理解的内容还是挺多的,或者换句话说,很重。如果直接按照官方的模板写代码,小型project还好,如果是大型项目,有复数个需要调试验证的模型和数据集,那就不太好办,甚至更加麻烦了...