指定预训练模型保存的路径。这个路径通常是 .ckpt 文件(PyTorch Lightning 默认保存的模型格式)。 python checkpoint_path = "path/to/your/pretrained_model.ckpt" 使用PyTorch Lightning的加载函数加载模型: PyTorch Lightning 提供了 LightningModule.load_from_checkpoint 方法来加载模型。你需要定义一个 LightningModul...
若是从 checkpoint 初始化模型,可以向trainer传入参数empty_init=True,这样在读取 checkpoint 之前模型的权重不会占用内存空间,且速度更快。 withtrainer.init_module(empty_init=True): model = MyLightningModule.load_from_checkpoint("my/checkpoint/path.ckpt") trainer.fit(model) 要注意,此时必须保证模型的每个...
model = LitMNIST.load_from_checkpoint(PATH, loss_fx=torch.nn.SomeOtherLoss, generator_network=MyGenerator()) 还可以将完整对象(如dict或Namespace)保存到检查点。 # 使用argparse.Namespace class LitMNIST(LightningModule): def __init__(self, conf, *args, **kwargs): super().__init__() self...
初始化回调,监视 'val_loss' checkpoint_callback = ModelCheckpoint(monitor="val_loss") # 4. 向Trainer添加回调 trainer = Trainer(callbacks=[checkpoint_callback]) 2.手动保存 model = MyLightningModule(hparams) trainer.fit(model) trainer.save_checkpoint("example.ckpt") 3.加载(load_from_checkpoint)...
load_from_checkpoint: TypeError:init() missing 1 required positional argument I have read the issues before, but the things different ismyLightningModuleis inherited from my self-definedLightningModule. How to solve this problem or what is the best practice better suited to my needs?
# load checkpointcheckpoint="./lightning_logs/version_0/checkpoints/epoch=0-step=100.ckpt"autoencoder=LitAutoEncoder.load_from_checkpoint(checkpoint,encoder=encoder,decoder=decoder)# choose your trained nn.Moduleencoder=autoencoder.encoder encoder.eval()# embed 4 fake images!fake_image_batch=torch....
Trainer(resume_from_checkpoint='./lightning_logs/version_31/checkpoints/epoch=02-val_loss=0.05.ckpt') trainer.fit(model,dl_train,dl_valid) 代码语言:javascript 代码运行次数:0 运行 AI代码解释 GPU available: False, used: False TPU available: None, using: 0 TPU cores | Name | Type | ...
Outline & Motivation Spent a while debugging : model.load_from_checkpoint(model_path) which should be : model = LitModel.load_from_checkpoint(model_path) there should be a warning when the instance method is called. Pitch model.load_from...
[checkpoint_callback]);# 开始训练 trainer.fit(dck,datamodule=dm)else:# 测试阶段 dm.setup('test')# 恢复模型 model=MyModel.load_from_checkpoint(checkpoint_path='trained_model.ckpt')# 定义trainer并测试 trainer=pl.Trainer(gpus=1,precision=16,limit_test_batches=0.05)trainer.test(model=model,...
from torch.utils.data import DataLoader, random_split import pytorch_lightning as pl 1. 2. 3. 4. 5. 6. 7. 8. Step 1: 定义Lightning模型 class LitAutoEncoder(pl.LightningModule): def __init__(self): super().__init__() self.encoder = nn.Sequential( ...