PyTorch Lightning 1.6.0dev documentationpytorch-lightning.readthedocs.io/en/latest/common/trainer.html Trainer可接受的全部参数如下 Trainer.__init__( logger=True, checkpoint_callback=None, enable_checkpointing=True, callbacks=None, default_root_dir=None, gradient_clip_val=None, gradient_clip_algor...
trainer = Trainer(accelerator="cuda", precision="16-true")withtrainer.init_module():# models created here will be on GPU and in float16model = MyLightningModule() 若是从 checkpoint 初始化模型,可以向trainer传入参数empty_init=True,这样在读取 checkpoint 之前模型的权重不会占用内存空间,且速度更快。
#trainer = pl.Trainer(resume_from_checkpoint='./lightning_logs/version_31/checkpoints/epoch=02-val_loss=0.05.ckpt') trainer.fit(model,dl_train,dl_valid) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. GPU available: False, used: False TPU available: None, using...
classMyDataModule(pl.LightningDataModule):def__init__(self):super().__init__()...blablabla...defsetup(self,stage):# 实现数据集的定义,每张GPU都会执行该函数,stage 用于标记是用于什么阶段ifstage=='fit'or stage is None:self.train_dataset=DCKDataset(self.train_file_path,self.train_file_num...
Trainer(resume_from_checkpoint='./lightning_logs/version_31/checkpoints/epoch=02-val_loss=0.05.ckpt') trainer.fit(model,dl_train,dl_valid) 代码语言:javascript 代码运行次数:0 运行 AI代码解释 GPU available: False, used: False TPU available: None, using: 0 TPU cores | Name | Type | ...
pl 和 pytorch 本质相同,只不过pytorch需要自己造轮子,如model、dataloader、loss、train、test、checkpoint和save mode等,而pl 把这些模块都结构化和自动化了。 1.1 pl的优势 通过抽象出样板工程代码,可以更容易地识别和理解ML代码; pl代码结构统一,便于项目构建; ...
pytorch lightning 提前停止 pytorch checkpoint 1、模型存储及加载 (1)官方推荐方法 #第一种:只存储模型中的参数,该方法速度快,占用空间少(官方推荐使用) 1. (2)保存checkpoint(检查点) 通常在训练模型的过程中,可能会遭遇断电、断网的尴尬,一旦出现这种情况,先前训练的模型就白费了,又得重头开始训练。因此每隔...
Trainer(resume_from_checkpoint='./lightning_logs/version_31/checkpoints/epoch=02-val_loss=0.05.ckpt') #训练模型 trainer.fit(model,data_mnist) Epoch 8: 100% 1876/1876 [01:44<00:00, 17.93it/s, loss=0.0603, v_num=0, train_acc=1.000, val_acc=0.985] 4,评估模型 代码语言:javascript ...
高效且训练速度快。Lightning还允许使用PyTorch的所有多进程和并行工作技巧(如DDP),而无需编写额外的代码。 内置开发工具,如健全性检查(用于验证和训练循环以及模型架构)、即时创建过拟合数据集、早停回调、最佳权重管理等。例如https://lightning.ai/docs/pytorch/stable/debug/debugging_basic.html ...
2.2 LightningDataModule 这一个类必须包含的部分是setup(self, stage=None)方法,train_dataloader()方法。 setup(self, stage=None):主要是进行Dataset的实例化,包括但不限于进行数据集的划分,划分成训练集和测试集,一般来说都是Dataset类 train_dataloader():很简单,只需要返回一个DataLoader类即可。