PyTorch Lightning 对工程代码逻辑进行了封装,只需要在 Trainer 类中简单设置即可调用。 pl 和 pytorch 本质相同,只不过pytorch需要自己造轮子,如model、dataloader、loss、train、test、checkpoint和save mode等,而pl 把这些模块都结构化和自动化了。 1.1 pl的优势 通过抽象出样板工程代码,可以更容易地识别和理解ML...
每个进程都会更新自己的 optimizer 4 Pytorch-Lightning分布式训练 PL框架进行分布式训练,只需要通过修改pl.Trainer()中的参数即可将单机单卡变成多机多卡的训练方式。 4.1 两种训练方式 (1) 单机多卡. 单机多卡时无需指定参数num_nodes: # 使用4块GPU,trainer=pl.Trainer(gpus=4,strategy="dp")# 使用0,1,2号...
要将模型转换为PyTorch Lightning,只需将pl.LightningModule替换为nn.Module 新的PyTorch Lightning类与PyTorch完全相同,只不过LightningModule提供了用于研究代码的结构。 Lightning为PyTorch代码提供了结构 看到?两者的代码完全相同! 这意味着可以像使用PyTorch模块一样完全使用LightningModule,例如预测 或将其用作预训练模型 ...
pip install https://github.com/PytorchLightning/pytorch-lightning/archive/master.zip --upgrade 安装任何发行版 您还可以从存储库中安装任何以前的0.X.Y发行版: pip install https://github.com/PytorchLightning/pytorch-lightning/archive/0.X.Y.zip --upgrade Lightning 团队 领导 William Falcon(...
PyTorch Lightning 专门为机器学习研究者开发的PyTorch轻量包装器(wrapper)。缩放您的模型。写更少的模板代码。 持续集成 使用PyPI进行轻松安装 master(https://pytorch-lightning.readthedocs.io/en/latest) 0.7.6(https://pytorch-lightning.readthedocs.io/en/0.7.6/) ...
PyTorch与PyTorch Lightning比较 直接上图。 我们就以构建一个简单的MNIST分类器为例,从模型、数据、损失函数、优化这四个关键部分入手。 模型 首先是构建模型,本次设计一个3层全连接神经网络,以28×28的图像作为输入,将其转换为数字0-9的10类的概率分布。
PyTorch Lightning 是一种重构 PyTorch 代码的工具,它可以抽出代码中复杂重复的部分,使得 AI 研究可扩展并且可以快速迭代。然而近日一位名为 Florian Ernst 的博主却发现 PyTorch Lightning 存在一个 bug——让原本应该加速的训练变得更慢了。 本文作者 Florian Ernst ...
pytorch-lightning 是建立在pytorch之上的高层次模型接口,pytorch-lightning之于pytorch,就如同keras之于tensorflow。 关于pytorch-lightning的完整入门介绍,可以参考我的另外一篇文章。 使用pytorch-lightning漂亮地进行深度学习研究 我用了约80行代码对 pytorch-lightning 做了进一步封装,使得对它不熟悉的用户可以用类似Keras...
通过在PyTorch Lightning中设置混合精度标志(flag),它会在可能的情况下自动使用半精度,而在其他地方保留单精度。通过最小的代码修改,模型训练的速度可以提升1.5至2倍。早停法 当我们训练深度学习神经网络的时候,通常希望能获得最好的泛化性能。但是所有的标准深度学习神经网络结构,比如全连接多层感知机都很容易过...
PyTorch Lightning是一个为PyTorch深度学习框架提供高级抽象的库,旨在简化模型开发和训练过程。通过使用PyTorch Lightning,你可以更轻松地组织和管理你的代码,提高代码的可读性和可维护性。在本文中,我们将深入探讨PyTorch Lightning的核心概念,包括LightningModule、Trainer、Callback和DataLoader等。我们将通过实例演示如何使用...