pytorch_lightning Trainer设置loss 一、问题描述 假设我们现在有如下的式子: y=x*x z=2*y 然后,我们想求z在x=3处的梯度,学过数学的同学大都知道怎么求,如下所示: 那么如何用Pytorch中的torch.autograd.grad和loss.backward()去求z在x=3处的梯度呢? 二、解决方案 1.使用torch.autograd.grad求z在x=3处的...
2. 配置训练器 PyTorch Lightning的Trainer模块可以帮助我们配置训练过程的各种参数,例如学习率、优化器和训练设备等。 importpytorch_lightningaspl# 创建Trainer实例并配置参数trainer=pl.Trainer(gpus=1,# 使用1个GPU进行训练max_epochs=10,# 总共训练10个epochprogress_bar_refresh_rate=20# 每隔20个batch更新一次进...
对于训练代码,你只需要3行代码,第一行是用于实例化模型类,第二行是用于实例化Trainer类,第三行是用于训练模型。 这个例子是用pytorch lightning训练的一种方法。当然,你可以对pytorch进行自定义风格的编码,因为pytorch lightning具有不同程度的灵活性。你想看吗?让我们继续。
html) Lightning是一种组织PyTorch代码,以使科学代码(science code)与工程分离的方法。它不仅仅是框架,而是PyTorch样式指南。在Lightning中,您可以将代码分为3个不同的类别: 研究代码(位于LightningModule中)。 工程代码(您删除并由trainer进行处理)。 不必要的研究代码(日志等,这些可以放在回调中)。 这是一个如何...
PyTorch Lightning可以将研究代码和工程代码分离,将PyTorch代码结构化,更加直观的展现数据操作过程,使得冗长的代码更加轻便,也可以称为轻量版的PyTorch。类似keras。 Lightning将以下结构强制应用于代码,从而使其可重用和共享: 研究代码(LightningModule)。 工程代码(Trainer)。
在Linghtning中,这部分代码抽象为 LightningModule 类。 1.2 工程代码 Engineering code 这部分代码很重要的特点是:重复性强,比如说设置early stopping、16位精度、GPUs分布训练。 在Linghtning中,这部分抽象为 Trainer 类。 1.3 非必要代码 Non-essential code ...
高效且训练速度快。Lightning还允许使用PyTorch的所有多进程和并行工作技巧(如DDP),而无需编写额外的代码。 内置开发工具,如健全性检查(用于验证和训练循环以及模型架构)、即时创建过拟合数据集、早停回调、最佳权重管理等。例如https://lightning.ai/docs/pytorch/stable/debug/debugging_basic.html ...
Engineering code (you delete, and is handled by the Trainer). Non-essential research code (logging, etc... this goes in Callbacks). Data (use PyTorch Dataloaders or organize them into a LightningDataModule). Once you do this, you can train on multiple-GPUs, CPUs and even in 16-bit pr...
还是HF的Trainer更加好用,没用过Pytorch Lightning,不对pytorch Lightning做评价。这里主要是分享我的HF...
一般不需要自定义,直接传参precision=xx (例如'16-mixed')即可。 (以前的包都叫pytorch_lightning, 但是之后只需要pip install lightning, 包的名字都换成了lightning,但是这俩还是通用的,理论上,参考: Connector 继续分析 pytorch_lightning.trainer.Trainer init函数 # init connectors self._data_connector = _Dat...