在pytorch中,nn.KLDivLoss()的计算公式如下: 上图y为标签,x为预测值,则pytorch应该以如下代码使用 :(1)、lossfunc=nn.KLDivLoss()(2)、loss = lossfunc(预测值, 标签值) 所以,在pytorch中预测值和标签值分别做如下处理:(1)、F.log_softmax(预测值/ temp, dim=1) (2)、F.softmax(标签值/ temp, ...
KLDiv Loss torch.nn.KLDivLoss(size_average=None,reduce=None,reduction:str='mean',log_target:bool=False) KL散度损失,即求模型输出和原始数据的KL散度,以此衡量两组数据分布之间的差异。 KL散度(Kullback–Leibler divergence),也叫相对熵,以离散随机变量X为例,X取值可能是x1,x2,…,xn,对应概率分布pi = ...
torch.nn.KLDivLoss(size_average=None, reduce=None, reduction: str = 'mean', log_target: bool = False) 1. KL散度损失,即求模型输出和原始数据的KL散度,以此衡量两组数据分布之间的差异。 KL散度(Kullback–Leibler divergence),也叫相对熵,以离散随机变量X为例,X取值可能是x1,x2,…,xn,对应概率分布...
CrossEntropyLoss和NLLLoss和KLDivLoss 看名字可能感觉这三个Loss不搭嘎。 NLLLoss的全称是Negative Log Likelihood Loss,中文名称是最大似然或者log似然代价函数。 CrossEntropyLoss是交叉熵代价函数。 KLDivLoss是Kullback-Leibler divergence Loss。 NLLLoss 似然函数是什么呢? 似然函数就是我们有一堆观察所得得结果,...
Pytorch中KL散度有三个坑:1. 第一个坑:顺序不一样 pytorch_kldiv(pred, target)=KL(target || ...
9、nn.KLDivLoss 功能:相对熵损失函数也称KLD(divergence)、KL散度 注意事项: 需提前将输入计算log-probabilities,如通过nn.logsoftmax()实现 nn.PoissonNLLLoss(size_average=None, reduce=None, reduction='mean') 主要参数: reduction:none/sum/mean/batchmean(以batchsize维度求平均值) 由于相对熵损失函数(KL...
NLLLoss,全称为Negative Log Likelihood Loss,是一种最大似然或log似然代价函数,其本质是衡量预测结果与实际观察值之间的差异。CrossEntropyLoss是交叉熵代价函数,其数学形式与NLLLoss相似,常用于多分类问题中评估模型预测概率分布与实际标签分布的差异。KLDivLoss,即Kullback-Leibler divergence Loss,用于...
torch.nn.KLDivLoss(reduction='mean') 参数: reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。 5. 二进制交叉熵损失 BCELoss 二分类任务时的交叉熵计算函数。用于测量重构的误差, 例如自动编码机. 注意目标的值 t[i] 的范围为0到...
torch中提供有两种不同的api用于计算KL散度,分别是torch.nn.functional.kl_div()和torch.nn.KLDivLoss(),两者计算效果类似,区别无非是直接计算和作为损失函数类。 先介绍一下torch.nn.functional.kl_div(): 注意,该方法的input和target与 中 、 的位置正好相反,从参数名称就可以看出来(target为目标分布 ...
6.KLDivLoss class torch.nn.KLDivLoss(size_average=None, reduce=None, reduction='elementwise_mean') 功能:计算input和target之间的KL散度( Kullback–Leibler divergence) 。 计算公式: (后面有代码手动计算,证明计算公式确实是这个,但是为什么没有...