torch.masked_select(input, mask, out=None):按 mask 中的 True 进行索引,返回值:一维张量。input 表示要索引的张量,mask 表示与 input 同形状的布尔类型的张量。这种情况在选择符合某些特定条件的元素的时候非常好使,注意这个是返回一维的张量。 mask = t.ge(5) # le表示<=5, ge表示>=5 gt >5 lt <...
Implemented kl divergence between normal and laplace distribution. (#68807) Improved meta tensor support for operators: max (#61449) min (#61450) tril, triu (#67055) mv (#67373) range, arange, linspace, logspace (#67032) lerp (#68924) smooth_l1_loss (#67404) fractional_max_pool2d...
tensorflow kl_divergence code I think it would be better if thexlogyreturns correct-inftarget gradient at(0,0)instead ofnan, thus I will post newxlogyissue if it is needed. huanranchen reacted with thumbs up emoji 👍 sheviousclosed this ascompletedNov 30, 2022 ...
第6行,大于等于0.5的数置为1,否则置为0 torch.masked_select(input, mask)。input输入张量,mask掩码张量。mask须跟input有相同数量的元素数目,但形状或维度不需要相同。 In[39]: src = torch.tensor([[4,3,5],[6,7,8]]) # 先打平成1维的,共6列 In[40]: src Out[40]: tensor([[4, 3, 5],...
此外,还有sigmoid cross_entropy_loss,可以被用于多标签分类任务或者不需要创建类间竞争机制的分类任务,在Mask RCNN中就使用了sigmoid cross_entropy_loss。 以上涵盖了大部分常用的分类任务损失,大部分都是对数的形式,这是由信息熵的定义和参数似然估计的本质决定的。
False>>>y=torch.ones(1)# another tensorwithrequires_grad=False>>>z=x+y>>># both inputs have requires_grad=False.so does the output>>>z.requires_grad False>>># then autograd won't track this computation. let's verify!>>>z.backward()RuntimeError:element0oftensors does not require ...
# we can now index with a mask that has fewer # dimensions than the indexing tensor c= a[mask, :5] 快速傅里叶变换 添加新的 FFT 方法#5856 添加torch.stft(短时傅立叶变换)和 hann / hamming / Bartlett 窗函数。#4095 在* FFT#6528 中支持任...
Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {{ message }} whr94621 / NJUNMT-pytorch Public Notifications You must be signed in to change notification settings Fork 31 ...
- UDA with BERT UDA works as part of BERT. It means that UDA act as an assistant of BERT. So, in the picture above modelMis BERT. - Loss UDA consist of supervised loss and unsupervised loss. Supervised loss is traditional Cross-entropy loss and Unsupervised loss is KL-divergence loss of...
distributions.Cauchy: Implemented kl divergence (#36477) distributions.Transform: Add a .with_cache() method (#36882) distributions.Binary: Implemented BTRS algorithm for fast/efficient binomial sampling (#36858)Internals🆕 New macro TORCH_FN for passing in compile time function pointers as ...