grid = torch.zeros(1, H, W, 2) # x坐标:从-1到1,严格对齐像素角点 grid_x = torch.linspace(-1, 1, W).expand(H, W) # y坐标:从-1到1,严格对齐像素角点 grid_y = torch.linspace(-1, 1, H).unsqueeze(1).expand(H, W) grid[..., 0] = grid_x # 水平坐标 grid[..., 1] =...
PyTorch中的grid_sample函数用于执行空间变换,它根据提供的网格对输入张量进行采样。如果你发现grid_sample返回了不正确的值,可能是由于以下几个原因: 基础概念 grid_sample函数的基本概念包括: 输入张量:通常是一个四维张量,形状为(N, C, H_in, W_in),其中N是批量大小,C是通道数,H_in和W_in分别是输入的高度...
1、pytorch中的F.grid_sample使用方法及应用代码(align_corners参数详细解释)_f.gridsample-CSDN博客 2、【通俗易懂】详解torch.nn.functional.grid_sample函数:可实现对特征图的水平/垂直翻转_gridsample-CSDN博客 pytorch官方文档:torch.nn.functional.grid_sample — PyTorch 2.3 documentation 先说结论,grid_sample...
在PyTorch这一流行的深度学习框架中,F.grid_sample函数提供了实现grid sample操作的强大工具。通过这个函数,用户可以在输入特征图上执行复杂的空间变换。F.grid_sample需要两个主要参数:输入特征图和grid(网格)。输入特征图是一个四维张量,形状为[batch_size, channels, height, width],而grid则是一个具有相同维度(...
简介:本文介绍了PyTorch中的F.grid_sample函数,用于2D图像上的网格采样技术,并探讨了百度智能云文心快码(Comate)在文本辅助图像处理方面的应用潜力。通过理解网格采样的基本概念和F.grid_sample的插值方法,可以更好地应用于图像处理任务。同时,文心快码(Comate)作为文本生成工具,虽不直接涉及图像处理,但可为图像处理任务...
pytorch F.grid_sample import torch from torch.nn import functional as F inp = torch.ones(1, 1, 4, 4) inp = torch.randint(1, 10, (1, 1, 4, 4)).float()# 目的是得到一个 长宽为20的tensorout_h = 20 out_w = 20# grid的生成方式等价于用mesh_gridnew_h = torch.linspace(-1, ...
torch.nn.functional.grid_sample 首先我们看pytorch文档中给出的描述: torch.nn.functional.grid_sample(input, grid, mode=‘bilinear’, padding_mode=‘zeros’, align_corners=None) Given an input and a flow-field grid, computes the output using input values and pixel locations from grid. ...
pytorch 中提供了对Tensor进行Crop的方法,可以使用GPU实现。具体函数是torch.nn.functional.affine_grid和torch.nn.functional.grid_sample。前者用于生成二维网格,后者对输入Tensor按照网格进行双线性采样。 grid_sample函数中将图像坐标归一化到[−1,1][−1,1],其中0对应-1,width-1对应1。
是torch.nn.functional.affine_grid和torch.nn.functional.grid_sample。前者⽤于⽣成⼆维⽹格,后者对输⼊Tensor按照⽹格进⾏双线性采样。grid_sample函数中将图像坐标归⼀化到[−1,1],其中0对应-1,width-1对应1。affine_grid的输⼊是仿射矩阵(Nx2x3)和输出Tensor的尺⼨(Tensor.Size(NxHxWx...
pytorch中的grid_sample是一种特殊的采样算法。 调用接口为: torch.nn.functional.grid_sample(input,grid,mode='bilinear',padding_mode='zeros',align_corners=None)。 input参数是输入特征图tensor,也就是特征图,可以是四维或者五维张量,以四维形式为例(N,C,Hin,Win),N可以理解为Batch_size,C可以理解为通道数...