为DDPM编写噪声/方差调度程序也非常简单。在DDPM中,我们的调度器将在1e-4开始,在0.02结束,并线性增加。 class DDPM_Scheduler(nn.Module):def __init__(self, num_time_steps: int=1000):super().__init__()self.beta = torch.linspace(...
在DDPM(去噪扩散概率模型)的研究中,作者使用了最初为医学图像分割设计的UNET架构来构建模型,预测扩散反向过程中的噪声。本文中我们将使用32x32像素的图像,MNIST就是这样的数据集,但这个模型也可以扩展以处理更高分辨率的数据。UNET有许多变种,但我们将构建的模型架构概览如下图所示。 UNET是一个深度学习网络,它具有...
例如,在DDPM中,噪声计划特征是从1e-4到0.02线性增加方差的1000个时间步。同样重要的是要注意正向过程是静态的,这意味着是我们选择噪声计划作为扩散模型的一个超参数,并且这个正向过程是不用训练的,因为它已经明确定义。 关于正向过程的最后一个关键细节是,因为这些分布是正态的,可以数学上推导出一个称为“扩散核”...
Train.py 三个.py文件组成(后续解析,逐步完善) 1.Diffusion.py importtorchimporttorch.nnasnnimporttorch.nn.functionalasFimportnumpyasnpdefextract(v,t,x_shape):"""Extract some coefficients at specified timesteps, then reshape to[batch_size, 1, 1, 1, 1, ...] for broadcasting purposes."""devi...
扩散模型DDPM 去噪扩散概率模型(DDPM)是生成模型领域的一种前沿方法。与依赖显式似然函数的传统模型不同,DDPM通过对扩散过程进行迭代去噪来运行。这包括逐渐向图像中添加噪声并试图去除该噪声。其基本理论是基于这样一种思想:通过一系列扩散步骤转换一个简单的分布,例如高斯分布...
简介:在本文中,我们将构建基础的无条件扩散模型,即去噪扩散概率模型(DDPM)。从探究算法的直观工作原理开始,然后在PyTorch中从头构建它。本文主要关注算法背后的思想和具体实现细节。 扩散模型通常是一种生成式深度学习模型,它通过学习去噪过程来创建数据。扩散模型有许多变体,其中最流行的是条件文本模型,能够根据提示生成...
使用Pytorch中从头实现去噪扩散概率模型(DDPM) 扩散模型通常是一种生成式深度学习模型,它通过学习去噪过程来创建数据。扩散模型有许多变体,其中最流行的是条件文本模型,能够根据提示生成特定的图像。某些扩散模型(如Control-Net)甚至能将图像与某些艺术风格融合。
在PyTorch中实现DDPM通常包括以下几个主要模块和函数: 模型(Model):通常是一个U-Net架构,用于学习数据的去噪过程。 调度器(Scheduler):控制正向扩散过程中噪声的添加方式。 训练函数(Training Function):负责加载数据、训练模型并保存检查点。 推理函数(Inference Function):使用训练好的模型从噪声中生成新的样本。 以下...
在深入研究去噪扩散概率模型(DDPM)如何工作的细节之前,让我们先看看生成式人工智能的一些发展,也就是DDPM的一些基础研究。 VAE VAE 采用了编码器、概率潜在空间和解码器。在训练过程中,编码器预测每个图像的均值和方差。然后从高斯分布中对这些值进行采样,并将其传递到解码器中,其中输入的图像预计与输出的图像相似。