1. PyTorch中CrossEntropyLoss的基本概念 CrossEntropyLoss 结合了 LogSoftmax 和 NLLLoss(负对数似然损失)在一个单独的类中。它计算目标值与预测值之间的交叉熵损失。在多分类问题中,模型通常会输出每个类别的概率(即,输出经过softmax激活函数的结果),而CrossEntropyLoss期望的输入是这些原始的、未经过softmax的“log...
CrossEntropyLoss() # 定义输入和目标标签 input1 = torch.tensor([[2.0, 0.5], [0.5, 2.0]], requires_grad=True) # 批量大小为 2 target1 = torch.tensor([0, 1]) # 对应的目标标签 input2 = torch.tensor([[2.0, 0.5], [0.5, 2.0], [2.0, 0.5], [0.5, 2.0]], requires_grad=True) #...
CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100,reduce=None, reduction=‘mean’, label_smoothing=0.0) 1. 类别的分类问题。参数weight给定时,其为分配给每一个类别的权重的一维张量(Tensor)。当数据集分布不均衡时,这是很有用的。 函数输入(input)应包含每一...
CrossEntropyLoss:交叉熵损失函数。 二. 实例 用例子来解释下CrossEntropyLoss和NLLLoss的区别,以三个样本为一个batch,任务为三分类为例。 1. input_:输入,模型的预测结果; target:真实结果、groudTruth,预测三个样本分类为类别0、2、1; 图1 2. 先对input_进行softmax,将结果映射的0~1之间的概率,每一行为一...
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=None,logits=None) 1. logits:计算的输出,shape是是[batch_size, num_classes],类型时float32、float64 labels:shape是 [batch_size],类型必须为int32、int64 output:loss值,shape是[batch_size] ...
对比结果可以发现 通过 对CrossEntropyLoss函数分解并分步计算的结果,与直接使用CrossEntropyLoss函数计算的结果一致。 2.3 pytorch 和 tensorflow在损失函数计算方面的差异 pytorch和tensorflow在损失函数计算方面有细微的差别的,为啥对比pytorch和tensorflow的差异,因为一个更符合人的想法,一个稍微有一些阉割的问题,导致我们按...
>>> loss =nn.CrossEntropyLoss()>>> input = torch.randn(3, 5, requires_grad=True)>>> target = torch.empty(3, dtype=torch.long).random_(5)>>> output =loss(input, target)>>> output.backward() 1.在loss中的输入中,target为类别的index,而非one-hot编码。
pytorch中CrossEntropyLoss的使用 pytorch中CrossEntropyLoss的使⽤ CrossEntropyLoss 等价于 softmax+log+NLLLoss LogSoftmax等价于softmax+log # ⾸先定义该类 loss = torch.nn.CrossEntropyLoss()#然后传参进去 loss(input, target)input维度为N*C,是⽹络⽣成的值,N为batch_size,C为类别数;target...
Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。 1、Softmax后的数值都在0~1之间,所以ln之后值域是负无穷到0。 2、然后将Softmax之后的结果取log,将乘法改成加法减少计算量,同时保障函数的单调性 ...
NLLLoss 的 输入 是一个对数概率向量和一个目标标签(不需要是one-hot编码形式的). 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 损失函数 nn.CrossEntropyLoss() 与 NLLLoss() 相同, 唯一的不同是它为我们去做 softmax. Nn.NLLLoss 和 nn.CrossEntropyLoss 的功能是非常相似的!通常都是...