returntorch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) 可以看到torch.nn下面的CrossEntropyLoss类在forward时调用了nn.functional下的cross_entropy函数,当然最终的计算是通过C++编写的函数计算的。 3.2 不同点 不同点1:在使用nn.CrossEnt...
PyTorch中的cross_entropy函数在torch.nn模块中定义,并可以通过调用torch.nn.functional.cross_entropy来使用。cross_entropy函数接受两个参数:input和target。 input参数是指模型的输出,通常为一个形状为(batch_size, num_classes)的张量。其中,batch_size表示每个批次中的样本数量,num_classes表示类别的个数。 target参...
在PyTorch中,我们可以使用torch.nn.CrossEntropyLoss来实现交叉熵损失的计算。这个函数在内部使用了log_softmax函数,它首先对模型输出进行softmax操作,然后计算对数概率。在此基础上,它将真实标签与对数概率进行比较并计算交叉熵损失。 CrossEntropyLoss函数的使用非常简单,只需要将模型输出(logits)和真实标签作为输入即可。
F.cross_entropy(x,y) cross_entropy(x,y)是交叉熵损失函数,一般用于在全连接层之后,做loss的计算。 其中x是二维张量,是全连接层的输出;y是样本标签值。 x[batch_size,type_num];y[batch_size]。 cross_entropy(x,y)计算结果是一个小数,表示loss的值。 举例说明 x = np.array(...
交叉熵损失函数变为: 这里有多种版本的实现:python - Label Smoothing in PyTorch - Stack Overflow PyTorch官方实现:CrossEntropyLoss — PyTorch 1.12 documentation torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) 从多种...
交叉熵(cross entropy):用于度量两个概率分布间的差异信息。交叉熵越小,代表这两个分布越接近。 函数表示(这是使用softmax作为激活函数的损失函数表示): (是真实值,是预测值。) 命名说明: pred=F.softmax(logits),logits是softmax函数的输入,pred代表预测值,是softmax函数的输出。 pred_log=F.log_softmax(...
对PyTorch中F.cross_entropy()的理解 PyTorch提供了求交叉熵的两个常用函数: 一个是F.cross_entropy(), 另一个是F.nll_entropy(), 是对F.cross_entropy(input, target)中参数target讲解如下。 一、交叉熵的公式及计算步骤 1、交叉熵的公式: H(p,q)=−i∑P(i)logQ(i) ...
交叉熵损失函数变为: 这里有多种版本的实现:python - Label Smoothing in PyTorch - Stack Overflow PyTorch官方实现:CrossEntropyLoss — PyTorch 1.12 documentation torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) ...
在使用Pytorch时经常碰见这些函数cross_entropy,CrossEntropyLoss, log_softmax, softmax。看得我头大,所以整理本文以备日后查阅。 首先要知道上面提到的这些函数一部分是来自于torch.nn,而另一部分则来自于torch.nn.functional(常缩写为F)。二者函数的区别可参见知乎:torch.nn和funtional函数区别是什么?
在PyTorch框架中,处理二分类问题时经常会用到两种损失函数:binary_cross_entropy(BCELoss)和binary_cross_entropy_with_logits(BCEWithLogitsLoss)。尽管它们的目的相似,但在使用方法和内部实现上存在显著差异。本文将简明扼要地介绍这两种损失函数,帮助读者在实际应用中选择合适的工具。 一、概述 BCELoss(Binary Cross-...