使用F.cross_entropy()直接可以传入参数和输入数据,而且由于F.cross_entropy() 得到的是一个向量也就是对batch中每一个图像都会得到对应的交叉熵,所以计算出之后,会使用一个mean()函数,计算其总的交叉熵,再对其进行优化。 1 2 3 import torch.nn.functionalasF loss = F.cross_entropy(input, target).mean()...
1.75才应该是cross entropy...我们对这一假设进行尝试,重新定义cross entropy函数: def cross_entropy(y_true, y_pred): y_pred = tf.nn.softmax(y_pred...中自行实现的cross entropy函数在实际的运行中发现效率略低于pytorch内置的函数实现,因此,在实际的应用中,更建议使用系统内置的cross entropy函数,尽管其...
F.cross_entropy(x,y) cross_entropy(x,y)是交叉熵损失函数,一般用于在全连接层之后,做loss的计算。 其中x是二维张量,是全连接层的输出;y是样本标签值。 x[batch_size,type_num];y[batch_size]。 cross_entropy(x,y)计算结果是一个小数,表示loss的值。 举例说明 x = np.array(...
PyTorch中的cross_entropy函数在torch.nn模块中定义,并可以通过调用torch.nn.functional.cross_entropy来使用。cross_entropy函数接受两个参数:input和target。 input参数是指模型的输出,通常为一个形状为(batch_size, num_classes)的张量。其中,batch_size表示每个批次中的样本数量,num_classes表示类别的个数。 target参...
交叉熵(cross entropy):用于度量两个概率分布间的差异信息。交叉熵越小,代表这两个分布越接近。 函数表示(这是使用softmax作为激活函数的损失函数表示): (是真实值,是预测值。) 命名说明: pred=F.softmax(logits),logits是softmax函数的输入,pred代表预测值,是softmax函数的输出。 pred_log=F.log_softmax(...
在PyTorch框架中,处理二分类问题时经常会用到两种损失函数:binary_cross_entropy(BCELoss)和binary_cross_entropy_with_logits(BCEWithLogitsLoss)。尽管它们的目的相似,但在使用方法和内部实现上存在显著差异。本文将简明扼要地介绍这两种损失函数,帮助读者在实际应用中选择合适的工具。 一、概述 BCELoss(Binary Cross-...
cross_entropy 交叉熵的计算公式为: \[cross\_entropy=-\sum_{k=1}^{N}\left(p_{k} * \log q_{k}\right) \] 其中 p 表示真实值,在这个公式中是one-hot形式; q 是预测值,在这里假设已经是经过softmax后的结果了。 代码示例 代码语言:javascript ...
在PyTorch中,我们可以使用torch.nn.CrossEntropyLoss类来计算交叉熵损失。这个类将softmax层和交叉熵损失函数结合在一起,方便我们使用。下面是一个示例: importtorchimporttorch.nnasnn# 模型输出outputs=torch.tensor([[0.1,0.2,0.7],[0.3,0.5,0.2]])# 真实标签labels=torch.tensor([2,0])# 创建交叉熵损失函数...
CrossEntropyLoss internally applies softmax. 拓展: F.log_softmax() F.log_softmax 等价于先应用 softmax 激活函数,然后对结果取对数 log()。它是将 softmax 和log 这两个操作结合在一起,以提高数值稳定性和计算效率。具体的数学定义如下: 在代码中,F.log_softmax 的等价操作可以用以下步骤实现: 计算...
在PyTorch中,我们可以使用torch.nn.CrossEntropyLoss来实现交叉熵损失的计算。这个函数在内部使用了log_softmax函数,它首先对模型输出进行softmax操作,然后计算对数概率。在此基础上,它将真实标签与对数概率进行比较并计算交叉熵损失。 CrossEntropyLoss函数的使用非常简单,只需要将模型输出(logits)和真实标签作为输入即可。