10) defforward(self, x): returnself.layer(x) deftraining_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.mse_loss(y_hat, y) returnloss defconfigure_optimizers(self): returntorch.optim.SGD(sel
-初始化(`__init__`):在这里,我们初始化所有必要的参数和模型结构。 -配置优化器(`configure_optimizers`):在这部分,我们定义模型的优化器、学习率调整策略等。 -训练步骤(`training_step`):我们仅需指定单个数据批次的损失计算方法,而优化器的梯度清零、损失反向传播和参数更新等步骤,以及日志记录或保存操作,都...
其实跟pytorch是一样的,基本上不需要修改 重写configure_optimizers()函数即可 # 设置优化器 def configure_optimizers(self): weight_decay = 1e-6 # l2正则化系数 # 假如有两个网络,一个encoder一个decoder optimizer = optim.Adam([{'encoder_params': self.encoder.parameters()}, {'decoder_params': self...
return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 可以看出: 训练数据是通过参数传递给training_step的,不在model内。 configur_optimizers 返回为模型设定的优化器。 训...
(self, batch, batch_idx): pass def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.hparams['learning_rate']) # Define hyperparameters and logger hparams = { 'learning_rate': 0.001, # other hyperparameters } logger = TensorBoardLogger(save_dir="logs", name=...
defconfigure_optimizers(self):return [torch.optim.Adam(self.parameters(),lr=0.02)]@ptl.data_loader deftng_dataloader(self):return DataLoader(MNIST(os.getcwd(),train=True,download=True,transform=transforms.ToTensor()), batch_size=32)@ptl.data_loader defval_dataloader(self):return DataLoader(...
这部分代码只执行一次。 1. `__init__()`(初始化 LightningModule ) 2. `prepare_data()` (准备数据,包括下载数据、预处理等等) 3. `configure_optimizers()` (配置优化器) 测试“验证代码”。 提前来做的意义在于:不需要等待漫长的训练过程才发现验证代码有错。
同理,在model_interface中建立class MInterface(pl.LightningModule):类,作为模型的中间接口。__init__()函数中import相应模型类,然后老老实实加入configure_optimizers,training_step,validation_step等函数,用一个接口类控制所有模型。不同部分使用输入参数控制。
同理,在model_interface中建立class MInterface(pl.LightningModule):类,作为模型的中间接口。__init__()函数中import相应模型类,然后老老实实加入configure_optimizers, training_step, validation_step等函数,用一个接口类控制所有模型。不同部分使用输入参数控制。
logits=self.forward(data)loss=F.nll_loss(logits,target)return{'loss':loss}defconfigure_optimizers(self):returntorch.optim.Adam(self.parameters(),lr=1e-3)# run the training model=ExtendMNIST()trainer=Trainer(max_epochs=5,gpus=1)trainer.fit(model,mnist_train_loader) ...