configure_optimizers。配置optimizer及scheduler。 init_optimizer。根据name初始化optimizer。 1.2 封装数据 在pytorch-lightning(PL)框架下,Dataset和DataLoader的使用与PyTroch框架下一致,都是先定义一个Dataset类,之后构建DataLoader。但在PL框架下统一处理trai
LightningModule将PyTorch代码整理成5个部分: Computations (init). Train loop (training_step) Validation loop (validation_step) Test loop (test_step) Optimizers (configure_optimizers) 例子: import pytorch_lightning as pl class LitModel(pl.LightningModule): def __init__(self): super().__init__(...
configure_optimizers:配置优化器。 数据加载 在PyTorch Lightning中,数据加载是通过DataModule来管理的。以下是一个简单的MNISTDataModule的例子: fromtorch.utils.dataimportDataLoaderfromtorchvision.datasetsimportMNISTfromtorchvisionimporttransformsclassMNISTDataModule(pl.LightningDataModule):def__init__(self,batch_size=...
# 实例化类的对象autoencoder=LitAutoEncoder(Encoder(),Decoder())# 获取优化器相关optimizer=autoencoder.configure_optimizers()# 拿到数据进行训练,内部实现还是做了训练forbatch_idx,batchinenumerate(train_loader):loss=autoencoder.training_step(batch,batch_idx)loss.backward()optimizer.step()optimizer.zero_gr...
同理,在model_interface中建立class MInterface(pl.LightningModule):类,作为模型的中间接口。__init__()函数中import相应模型类,然后老老实实加入configure_optimizers, training_step, validation_step等函数,用一个接口类控制所有模型。不同部分使用输入参数控制。
logits=self.forward(data)loss=F.nll_loss(logits,target)return{'loss':loss}defconfigure_optimizers(self):returntorch.optim.Adam(self.parameters(),lr=1e-3)# run the training model=ExtendMNIST()trainer=Trainer(max_epochs=5,gpus=1)trainer.fit(model,mnist_train_loader) ...
首先是准备工作,包括初始化 LightningModule,准备数据 和 配置优化器。 这部分代码只执行一次。 1. `__init__()`(初始化 LightningModule ) 2. `prepare_data()` (准备数据,包括下载数据、预处理等等) 3. `configure_optimizers()` (配置优化器) ...
definit(self): 定义网络架构(model);def forward(self, x):定义推理、预测的前向传播; def training_step(self, batch, batch_idx): 定义train loop; def configure_optimizers(self): 定义优化器 因此,定义的是一个系统而不是单纯的模型。 至...
其中,必须实现的函数只有__init__() 、training_step()、configure_optimizers()。 3. 定义一个数据模型:LightningDataModule 通过定义LightningDataModule的子类,数据集分割、加载的代码将整合在一起,可以实现的方法有: 1classMyDataModule(LightningDataModule):2def__init__(self):3super().__init__()4defpr...
defconfigure_optimizers(self):return [torch.optim.Adam(self.parameters(),lr=0.02)]@ptl.data_loader deftng_dataloader(self):return DataLoader(MNIST(os.getcwd(),train=True,download=True,transform=transforms.ToTensor()), batch_size=32)@ptl.data_loader defval_dataloader(self):return DataLoader(...